...
首页> 外文期刊>Journal of the Mechanics and Physics of Solids >A novel stress-induced anisotropic growth model driven by nutrient diffusion: Theory, FEM implementation and applications in bio-mechanical problems
【24h】

A novel stress-induced anisotropic growth model driven by nutrient diffusion: Theory, FEM implementation and applications in bio-mechanical problems

机译:一种新的应激诱导的营养扩散驱动的各向异性生长模型:理论,有限元实施和生物机械问题的应用

获取原文
获取原文并翻译 | 示例
           

摘要

In this paper, a novel physically-motivated anisotropic model for growth driven by nutrient diffusion is proposed and the mathematical framework is extensively presented. Growth phenomena usually occur in living tissues under different mechanobiological stimuli. Here the growth is driven by the diffusion of a chemical substance which reflects, in fact, the extent of nutrients availability or other growth factors at the cellular level. Due to its simplicity, a commonly used assumption is the isotropy of the growth tensor. In other words, the magnitude of the growth is determined by the nutrient diffusion without incorporating the effect of a preferred direction for cell growth. Since the macroscopic volumetric growth is the resultant of mitosis (binary fission) at cellular scale, it makes sense to confer directionality to the growth tensor. This will render the growth tensor anisotropic and consequently more complex. In this work, the anisotropy of the growth tensor is dictated by the principal directions of the stress tensor in an intuitive and physically motivated fashion. One can imagine that the growth is powered by nutrient diffusion while it is steered by the stress. A fully implicit and monolithic scheme is implemented for this coupled and multiphysics problem in an FEM framework. Several numerical examples are presented to demonstrate the applicability and versatility of the proposed model for reproducing biofilm growth in confined geometries; tumor growth within the brain in the avascular stage; and bone ingrowth in the vicinity of a rough implant surface.
机译:本文提出了一种新的用于营养扩散驱动的生长的新型物理动机各向异性模型,并呈现数学框架。在不同的机械刺激下的活组织中通常发生生长现象。这里的增长是由反映的化学物质的扩散驱动,实际上,营养物质可用性或细胞水平的其他生长因子的程度。由于其简单性,常用的假设是生长张量的各向同性。换句话说,通过营养扩散确定生长的幅度,而不包含优选方向的细胞生长的效果。由于宏观体积生长是细胞尺度下有丝分裂(二元裂变)的所合理的,因此赋予生长张量的方向性是有意义的。这将使生长张量各向异性并因此更复杂。在这项工作中,增长张量的各向异性由压力张量的主要方向以直观和身体动态的方式决定。人们可以想象,增长是由营养扩散的动力,同时由应力引导。在FEM框架中为此耦合和多体问题实施完全隐含的和单片方案。提出了几个数值例证以证明所提出的模型的适用性和多功能性,用于在狭窄的几何形状中再现生物膜生长的模型;血管阶段肿瘤内的肿瘤生长;和粗植入表面附近的骨骼。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号