首页> 外文期刊>Journal of the Mechanics and Physics of Solids >A micro-macro approach to rubber-like materials. Part Ⅱ: The micro-sphere model of finite rubber viscoelasticity
【24h】

A micro-macro approach to rubber-like materials. Part Ⅱ: The micro-sphere model of finite rubber viscoelasticity

机译:对橡胶状材料的微宏观方法。第二部分:有限橡胶粘弹性的微球模型

获取原文
获取原文并翻译 | 示例
           

摘要

A micromechanically based non-affine network model for finite rubber elasticity incorporating topological constraints was discussed in Part Ⅰ (2004. J. Mech. Phys. Solids 52, 2617-2660) of this work. In this follow-up contribution we extend the non-affine micro-sphere model towards the description of time-dependent viscoelastic effects. The viscoelastic network model is constructed by an additive split of the overall response into elastic equilibrium-stress and viscoelastic overstress contributions. The equilibrium response of the network is understood to be related to results obtained from an infinite relaxation process and modeled by our above mentioned elasticity formulation. Inspired by (2004. J. Mech. Phys. Solids 52, 2617-2660), the rate-dependent overstress response is assumed to be driven by two micro-kinematical mechanisms related to the stretch and the area contraction of a tube containing a prototype chain. Firstly, a retraction of fictitiously unconstrained dangling chains is explained by diffusive reptile motions. Secondly, a release of constraint effects due to surrounding chains is modeled by a time-dependence of a tube cross-section area. The latter contribution is considered to be a result of the retraction of forest chains. We outline a distinct micromechanical model for the viscous overstress in terms of the above outlined two micro-kinematic mechanisms and discuss its numerical implementation in context of an affine homogenization procedure of space orientations. The characteristics and modeling capabilities of the proposed micro-sphere model of Mite rubber viscoelasticity are reported for a broad spectrum of experimentally-based benchmark simulations. They demonstrate an excellent performance of the model in simulating rate and hystereses effects of rubbery polymers.
机译:这项工作的第一部分(2004. J. Mech。Phys。Solids 52,2617-2660)讨论了一种基于微观力学的有限拓扑弹性的非仿射网络模型,该模型具有拓扑约束。在此后续贡献中,我们将非仿射微球模型扩展为对时间依赖性粘弹性效应的描述。粘弹性网络模型是通过将总响应的加法分解分为弹性平衡应力和粘弹性超应力贡献而构建的。网络的平衡响应被理解为与从无限松弛过程获得的结果有关,并通过我们上面提到的弹性公式建模。受(2004. J. Mech。Phys。Solids 52,2617-2660)的启发,假设速率相关的过应力响应是由与包含原型的管的拉伸和面积收缩有关的两种微观动力学机制驱动的链。首先,通过扩散爬行动物运动来解释虚拟不受约束的悬挂链的回缩。其次,通过管横截面积的时间依赖性来模拟由于周围链引起的约束效应的释放。后者的贡献被认为是森林链退缩的结果。我们根据上面概述的两个微运动学机制,概述了粘性超应力的独特微力学模型,并讨论了空间定向的仿射均质化过程中的数值实现。报告的拟议的Mite橡胶粘弹性微球模型的特性和建模能力可用于广泛的基于实验的基准模拟。他们证明了该模型在模拟橡胶状聚合物的速率和滞后效应方面的出色性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号