首页> 外文期刊>Journal of the Franklin Institute >2016 Benjamin Franklin Medal in Mechanical Engineering presented to Shu Chien, M.D., Ph.D.
【24h】

2016 Benjamin Franklin Medal in Mechanical Engineering presented to Shu Chien, M.D., Ph.D.

机译:2016本杰明·富兰克林机械工程奖章颁发给医学博士Shu Chien

获取原文
获取原文并翻译 | 示例
           

摘要

The dynamics in blood circulation is determined by the functional states of its components, i.e., cardiac contractility, vascular hindrance, and blood viscosity. While blood viscosity is a determinant of blood flow, the shear stress resulting from blood flow also modulates blood viscosity. This shear dependence of blood viscosity is a result of the composition of the blood as a suspension of deformable and aggregable blood cells in protein-containing plasma. The interplay between blood rheology and shear stress has significant implications on circulatory regulation in health and in cardiovascular and hematological diseases. Shear stress also acts on the vascular endothelial cells (ECs) to modulate their gene and protein expressions to regulate vascular function in health and diseases, particularly those resulting from atherosclerosis such as myocardial infarction and stroke. Understanding of the mechanisms of mechanotransduction and gene regulation underlying the shear-modulation of vascular function is essential for the improvement of diagnosis, treatment, and prevention of these fatal diseases. Shu Chien has elucidated the fundamental determinants of blood viscosity, viz. cell concentration, plasma viscosity, and shear-dependent cell aggregation and cell deformability, which is determined in turn by intracellular viscosity, cell geometry, and membrane properties. He has applied such fundamental mechanical and molecular knowledge to the understanding of the role of blood rheology in cardiovascular and hematological diseases such as myocardial infarction, stroke, and sickle cell disease. His findings have led to improved management of these disorders such as the use of blood thinners to prevent restenosis after vascular stenting. By using a combination of cellular, molecular, and genomic techniques, coupled with innovative engineering experimentation and analysis, Dr. Chien has elucidated the roles of flow patterns in mechanotransduction and gene regulation in endothelial cells, including mechano-sensing, molecular signaling, genetic and epigenetic modulation, and functional regulation in response to mechanical forces. He formulated the concept that the adaptive response of intracellular rheology to different shear stress patterns is a key mechanism for homeostasis. He established the principle that shear stress with a clear direction is athero-protective, while that without is atherogenic; this has led to the recognition of the importance of minimizing disturbed flow in the treatment and prevention of a variety of clinical conditions.
机译:血液循环的动力学取决于其组成部分的功能状态,即心脏收缩性,血管障碍和血液粘度。血液粘度决定着血液的流动性,而由血液流动引起的剪切应力也会调节血液的粘度。血液粘度的这种剪切依赖性是由于血液组成为可变形和可凝集的血细胞在含蛋白质的血浆中的悬浮液的结果。血液流变学和剪切应力之间的相互作用对健康,心血管疾病和血液病中的循环调节具有重要意义。剪应力还作用于血管内皮细胞(EC),以调节其基因和蛋白质表达,从而调节健康和疾病中的血管功能,尤其是那些由动脉粥样硬化引起的疾病,例如心肌梗塞和中风。了解机械转导和血管功能剪切调节基础的基因调控机制对于改善这些致命疾病的诊断,治疗和预防至关重要。舒建恩阐明了血液粘度的基本决定因素。细胞浓度,血浆粘度以及与剪切有关的细胞聚集和细胞变形能力,这又由细胞内粘度,细胞几何形状和膜特性决定。他将这种基本的机械和分子知识应用到了血液流变学在心血管和血液系统疾病(如心肌梗塞,中风和镰状细胞疾病)中的作用的理解上。他的发现导致改善了对这些疾病的管理,例如使用血液稀释剂防止血管支架置入术后再狭窄。通过结合细胞,分子和基因组技术,结合创新的工程实验和分析,Chien博士阐明了流型在内皮细胞机械转导和基因调控中的作用,包括机械感测,分子信号转导,遗传和表观遗传调制,以及响应机械力的功能调节。他提出了一个概念,即细胞内流变学对不同切应力模式的适应性反应是体内稳态的关键机制。他确立了一个原理,即方向清晰的剪切应力可以保护动脉粥样硬化,而没有方向的剪切应力则可以防止动脉粥样硬化。这已导致人们认识到在治疗和预防各种临床状况时尽量减少干扰流的重要性。

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号