首页> 外文期刊>Journal of the American Chemical Society >Evidence for a Solid-Electrolyte Inductive Effect in the Superionic Conductor Li_(10)Ge_(1-x)Sn_xP_2S_(12)
【24h】

Evidence for a Solid-Electrolyte Inductive Effect in the Superionic Conductor Li_(10)Ge_(1-x)Sn_xP_2S_(12)

机译:超电解电解质在超前导体LI_(10)GE_(1-X)SN_XP_2S_(12)中的验证

获取原文
获取原文并翻译 | 示例
           

摘要

Strategies to enhance ionic conductivities in solid electrolytes typically focus on the effects of modifying their crystal structures or of tuning mobile-ion stoichiometries. A less-explored approach is to modulate the chemical bonding interactions within a material to promote fast lithium-ion diffusion. Recently, the idea of a solid-electrolyte inductive effect has been proposed, whereby changes in bonding within the solid-electrolyte host framework modify the potential energy landscape for the mobile ions, resulting in an enhanced ionic conductivity. Direct evidence for a solid-electrolyte inductive effect, however, is lacking-in part because of the challenge of quantifying changes in local bonding interactions within a solid-electrolyte host framework. Here, we consider the evidence for a solid-electrolyte inductive effect in the archetypal superionic lithium-ion conductor Li_(10)Ge_(1-x)Sn_xS_(12). Substituting Ge for Sn weakens the {Ge,Sn}-S bonding interactions and increases the charge density associated with the S~(2-) ions. This charge redistribution modifies the Li~+ substructure causing Li~+ ions to bind more strongly to the host framework S~(2-) anions, which in turn modulates the Li~+ ion potential energy surface, increasing local barriers for Li~+ ion diffusion. Each of these effects is consistent with the predictions of the solid-electrolyte inductive effect model. Density functional theory calculations predict that this inductive effect occurs even in the absence of changes to the host framework geometry due to Ge → Sn substitution. These results provide direct evidence in support of a measurable solid-electrolyte inductive effect and demonstrate its application as a practical strategy for tuning ionic conductivities in superionic lithium-ion conductors.
机译:增强固体电解质中的离子导电性的策略通常聚焦改变其晶体结构或调谐移动离子化学物质的效果。一种较少探索的方法是调节材料内的化学键合相互作用以促进快速锂离子扩散。最近,已经提出了固体电解质感应效果的思想,其中固体电解质宿主框架内的键合改变改变移动离子的潜在能量景观,从而提高了离子电导率。然而,由于定量固体电解质孔框架内的局部键合相互作用的挑战,缺乏固体电解质感应效应的直接证据。在这里,我们考虑在原型超前锂离子导体Li_(10)Ge_(1-x)Sn_xS_(12)中的固体电解质电感效果的证据。替代GE for Sn削弱{Ge,Sn}键合相互作用,并增加与S〜(2-)离子相关的电荷密度。该电荷再分配地改变Li〜+离子的锂+离子对主机框架S〜(2-)阴离子更强烈地结合,这反过来调节Li +离子势能表面,增加Li +的局部屏障离子扩散。这些效果中的每一个都与固体电解质电感效果模型的预测一致。密度泛函理论计算预测,即使在由于GE→SN替换而没有对主框架几何形状的改变的情况下发生这种感应效果。这些结果提供了直接证据,以支持可测量的固体电解质诱导效果,并证明其应用是调整离子锂离子导体中的离子电导率的实际策略。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2020年第50期|21210-21219|共10页
  • 作者单位

    Institute of Physical Chemistry and Center for Materials Research (LaMa) Justus-Liebig-University Giessen D-35392 Giessen Germany;

    Department of Chemistry University of Bath Bath BA2 7AY United Kingdom The Faraday Institution Didcot OX11 0RA United Kingdom;

    Institute of Inorganic and Analytical Chemistry University of Muenster 48149 Muenster Germany;

    Department of Chemistry University of Bath Bath BA2 7AY United Kingdom;

    Institute of Physical Chemistry and Center for Materials Research (LaMa) Justus-Liebig-University Giessen D-35392 Giessen Germany;

    Institute of Physical Chemistry and Center for Materials Research (LaMa) Justus-Liebig-University Giessen D-35392 Giessen Germany;

    Juelich Centre for Neutron Science (JCNS) Forschungszentrum Juelich GmbH Oak Ridge Tennessee 37831-6473 United States;

    Department of Chemistry University of Bath Bath BA2 7AY United Kingdom The Faraday Institution Didcot OX11 0RA United Kingdom;

    Institute of Inorganic and Analytical Chemistry University of Muenster 48149 Muenster Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号