首页> 外文期刊>Journal of the American Chemical Society >New Insights into Mn-Mn Coupling Interaction-Directed Photoluminescence Quenching Mechanism in Mn~(2+)-Doped Semiconductors
【24h】

New Insights into Mn-Mn Coupling Interaction-Directed Photoluminescence Quenching Mechanism in Mn~(2+)-Doped Semiconductors

机译:Mn〜(2+)掺杂半导体中Mn-Mn耦合相互作用的定向发光猝灭机理的新见解

获取原文
获取原文并翻译 | 示例
           

摘要

Strong Mn-Mn coupling interactions (dipole-dipole and spin-exchange), predominantly determined by statistically and apparently short Mn-Mn distances in traditional heavily Mn~(2+)-doped semiconductors, can promote energy transfer within randomly positioned and close-knit Mn~(2+) pairs. However, the intrinsic mechanism on controlling Mn~(2+) emission efficiency is still elusive due to the lack of precise structure information on local tetrahedrally coordinated Mn~(2+) ions. Herein, a group of Mn~(2+)-containing metal-chalcogenide open frameworks (MCOFs), built from [Mn_4In_(16)S_(35)] nanoclusters (denoted T4-MnInS) with a precise [Mn4S] configuration and length-variable linkers, were prepared and selected as unique models to address the above-mentioned issues. MCOF-5 and MCOF-6 that contained a symmetrical [Mn_4S] core with a D_(2d) point group and relatively long Mn...Mn distance (~3.9645 A) exhibited obvious red emission, while no room-temperature PL emission was observed in MCOF-7 that contained an asymmetric [Mn_4S] configuration with a C_1 point group and relatively short Mn-Mn distance (~3.9204 A). The differences of Mn-Mn dipole-dipole and spin-exchange interactions were verified through transient photoluminescent spectroscopy, electron spin resonance (ESR), and magnetic measurements. Compared to MCOF-5 and MCOF-6 showing a narrower/stronger ESR signal and longer decay lifetime of microseconds, MCOF-7 displayed a much broader/weaker ESR signal and shorter decay lifetime of nanoseconds. The results demonstrated the dominant role of distance-directed Mn-Mn dipole-dipole interactions over symmetry-directed spin-exchange interactions in modulating PL quenching behavior of Mn~(2+) emission. More importantly, the reported work offers a new pathway to elucidate Mn~(2+)-site-dependent photoluminescence regulation mechanism from the perspective of atomically precise nanoclusters.
机译:Mn-Mn的强相互作用(偶极-偶极和自旋交换)主要由传统的Mn〜(2+)重掺杂半导体中统计学上和表面上很短的Mn-Mn距离决定,可以促进在随机定位和紧密结合的半导体中进行能量转移。编织Mn〜(2+)对。然而,由于缺乏局部四面体配位的Mn〜(2+)离子的精确结构信息,控制Mn〜(2+)发射效率的内在机理仍然难以捉摸。本文中,由[Mn_4In_(16)S_(35)]纳米团簇(表示为T4-MnInS)和精确的[Mn4S]结构和长度构成的一组含Mn〜(2+)的金属硫族化物开放框架(MCOF)制备了可变接头并选择为独特模型来解决上述问题。 MCOF-5和MCOF-6包含对称的[Mn_4S]核,具有D_(2d)点组,并且Mn ... Mn距离相对较长(〜3.9645 A),表现出明显的红色发射,而没有室温PL发射。在MCOF-7中观察到,它具有不对称的[Mn_4S]构型,具有C_1点组和相对短的Mn-Mn距离(〜3.9204 A)。 Mn-Mn偶极-偶极和自旋交换相互作用的差异通过瞬态光致发光光谱,电子自旋共振(ESR)和磁测量进行了验证。与显示更窄/更强的ESR信号和更长的微秒衰减寿命的MCOF-5和MCOF-6相比,MCOF-7显示了更宽/更弱的ESR信号和更短的纳秒衰减寿命。结果表明,在调节Mn〜(2+)发射的PL猝灭行为中,距离定向的Mn-Mn偶极-偶极相互作用优于对称定向的自旋交换相互作用。更重要的是,从原子精确的纳米团簇的角度出发,所报道的工作为阐明Mn〜(2 +)-位点依赖的光致发光调节机制提供了新的途径。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2020年第14期|6649-6660|共12页
  • 作者单位

    College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou Jiangsu 215123 China;

    College oj Chemistry Chemical Engineering and Materials Science Soochow University Suzhou Jiangsu 215123 China;

    College of Materials and Chemical Engineering Hubei Provincial Collaborative Innovation Center for New Energy Microgrid Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang Hubei 443002 China;

    Wuhan National High Magnetic Field Center & School of Physics Huazhong University of Science and Technology Wuhan 430074 China;

    Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province Shantou University Shantou Guangdong 515000 China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号