首页> 外文期刊>Journal of the American Chemical Society >First-Principles Characterization of the Elusive I Fluorescent State and the Structural Evolution of Retinal Protonated Schiff Base in Bacteriorhodopsin
【24h】

First-Principles Characterization of the Elusive I Fluorescent State and the Structural Evolution of Retinal Protonated Schiff Base in Bacteriorhodopsin

机译:细菌视紫红质的难以捉摸的I荧光状态的第一性状表征和视网膜质子化席夫碱的结构演变

获取原文
获取原文并翻译 | 示例
           

摘要

The conversion of light energy into work is essential to life on earth. Bacteriorhodopsin (bR), a light-activated proton pump in Archae, has served for many years as a model system for the study of this process in photoactive proteins. Upon absorption of a photon, its chromophore, the retinal protonated Schiff base (RPSB), isomerizes from its native all-trans form to a 13-cis form and pumps a proton out of the cell in a process that is coupled to eventual ATP synthesis. Despite numerous time-resolved spectroscopic studies over the years, the details of the photodynamics of bR on the excited state, particularly the characterization of the I fluorescent state, the time-resolved reaction mechanism, and the role of the counterion cluster of RPSB, remain uncertain. Here, we use ab initio multiple spawning (AIMS) with spin-restricted ensemble Kohn-Sham (REKS) theory to simulate the nonadiabatic dynamics of the ultrafast photoreaction in bR. The excited state dynamics can be partitioned into three distinct phases: (1) relaxation away from the Franck-Condon region dominated by changes in retinal bond length alternation, (2) dwell time on the excited state in the I fluorescent state featuring an untwisted, bond length inverted RPSB, and (3) rapid torsional evolution to the conical intersection after overcoming a small excited state barrier. We fully characterize the I fluorescent state and the excited state barrier that hinders direct evolution to the conical intersection following photoexcitation. We also find that photoisomerization is accompanied by weakening of the interaction between RPSB and its counterion cluster. However, in contradiction with a recent time-resolved X-ray experiment, hydrogen bond cleavage is not necessary to reproduce the observed photoisomerization dynamics.
机译:将光能转化为工作对地球上的生命至关重要。细菌视紫红质(bR)是Archae中的一种光活化质子泵,多年来一直是研究此过程中光敏蛋白过程的模型系统。吸收光子后,其发色团,视网膜质子化席夫碱(RPSB),从其天然全反式异构化为13顺式,并在与最终ATP合成偶联的过程中将质子泵出细胞。尽管多年来进行了许多时间分辨光谱研究,但仍保留了bR在激发态上的光动力学详细信息,尤其是I荧光态的表征,时间分辨的反应机理以及RPSB的抗衡离子簇的作用。不确定。在这里,我们使用具有自旋限制的集成Kohn-Sham(REKS)理论的从头算多生成(AIMS)来模拟bR中超快光反应的非绝热动力学。激发态动力学可以分为三个不同的阶段:(1)从以视网膜键长交替变化为主的Franck-Condon区弛豫;(2)在I荧光态下激发态的停留时间为非扭转,键长度倒置的RPSB,以及(3)在克服小的激发态势垒后迅速扭转发展成圆锥形相交。我们充分表征了I荧光态和激发态势垒,这些势垒阻碍了光激发后直接演变为圆锥形相交。我们还发现,光致异构化伴随着RPSB及其抗衡离子簇之间相互作用的减弱。但是,与最近的时间分辨X射线实验相反,不需要氢键裂解来重现观察到的光异构化动力学。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第45期|18193-18203|共11页
  • 作者单位

    Stanford Univ Dept Chem Stanford CA 94305 USA|Stanford Univ PULSE Inst Stanford CA 94305 USA|Stanford Univ Biophys Program Stanford CA 94305 USA|SLAC Natl Accelerator Lab 2575 Sand Hill Rd Menlo Pk CA 94025 USA;

    Stanford Univ Dept Chem Stanford CA 94305 USA|Stanford Univ PULSE Inst Stanford CA 94305 USA|SLAC Natl Accelerator Lab 2575 Sand Hill Rd Menlo Pk CA 94025 USA;

    MIT Dept Chem Engn Cambridge MA 02138 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号