首页> 外文期刊>Journal of the American Chemical Society >Coupled Electron- and Phase-Transfer Reactions at a Three-Phase Interface
【24h】

Coupled Electron- and Phase-Transfer Reactions at a Three-Phase Interface

机译:三相界面的电子和相转移耦合反应

获取原文
获取原文并翻译 | 示例
           

摘要

Coupled electron- and phase-transfer reactions are fundamentally important in electrochemical energy conversion and storage, e.g., intercalation of Li+ in batteries and electrochemistry at the three-phase boundary in fuel cells. The mechanism, energetics, and kinetics of these complex reactions play an important role in device performance. Herein, we describe experimental methodology to quantitatively investigate coupled electron- and phase-transfer reactions at an individual, geometrically well-defined, three-phase interface. Specifically, a Pt-Ir wire electrode is placed across a H2O/1,2-dichloroethane (DCE) interface, creating a Pt-Ir/H2O/DCE boundary that is defined mathematically by a line around the surface of the wire. We investigated the oxidation of ferrocene (Fc), initially present in DCE (but essentially insoluble in water), at the three-phase boundary, and the transfer of its charged reaction product ferrocenium (Fc(+)) across the interface into the aqueous phase. In cyclic voltammetry, a reversible wave at E-1/2 similar to 0.58 V is observed for Fc oxidation in DCE on the first scan. The Fc(+) produced near the H2O/DCE interface transfers into the aqueous phase. On the second and subsequent cycles, a second reversible wave at more negative potentials, E-1/2 similar to 0.33 V, is observed, corresponding to the reduction of Fc(+) (and reoxidation back to Fc) in the aqueous phase. Finite-element simulations quantitatively capture the voltammetric response of coupled electron and phase transfer at the three-phase interface and indicate that the electrochemical response observed in the aqueous phase occurs within similar to 200 mu m of the Pt-Ir/H2O/DCE boundary. Finally, we demonstrate that the rate of transfer of Fc(+) is strongly dependent on the concentration of supporting electrolyte, reaching a maximum at an intermediate electrolyte concentration, suggesting a critical role of the electric field distribution in determining the reaction rates at the three-phase interface.
机译:耦合的电子转移和相转移反应在电化学能量转换和存储中至关重要,例如,电池中Li +的嵌入和燃料电池三相边界处的电化学。这些复杂反应的机理,能量和动力学在设备性能中起着重要作用。在这里,我们描述了一种实验方法,用于定量研究在一个单独的,几何明确定义的,三相界面处的耦合的电子和相转移反应。具体而言,将Pt-Ir线电极跨过H2O / 1,2-二氯乙烷(DCE)界面放置,以创建Pt-Ir / H2O / DCE边界,该边界在数学上由围绕导线表面的线定义。我们研究了三相边界处最初存在于DCE中(但基本上不溶于水)的二茂铁(Fc)的氧化,以及其带电的反应产物二茂铁(Fc(+))跨界面转移到水溶液中的过程。相。在循环伏安法中,第一次扫描时,在DCE中观察到E-1 / 2处可逆波类似于0.58 V的Fc氧化。在H2O / DCE界面附近产生的Fc(+)转移到水相中。在第二个及随后的循环中,观察到第二个可逆波,其具有更多的负电势E-1 / 2(类似于0.33 V),对应于水相中Fc(+)的还原(并重新氧化回Fc)。有限元模拟定量地捕获了在三相界面处耦合电子和相转移的伏安响应,并表明在水相中观察到的电化学响应发生在大约200μm的Pt-Ir / H2O / DCE边界内。最后,我们证明了Fc(+)的转移速率强烈依赖于支持电解质的浓度,在中等电解质浓度下达到最大值,这表明电场分布在确定三个反应速率时的关键作用相接口。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第45期|18091-18098|共8页
  • 作者单位

    Univ Utah Dept Chem Salt Lake City UT 84112 USA;

    Univ Utah Dept Chem Salt Lake City UT 84112 USA|Miami Univ Oxford OH 45056 USA;

    Univ Utah Dept Chem Salt Lake City UT 84112 USA|Texas Instruments Inc Dallas TX USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号