首页> 外文期刊>Journal of the American Chemical Society >Lysine Mutation of the Claw-Arm-Like Loop Accelerates Catalysis by Cellobiohydrolases
【24h】

Lysine Mutation of the Claw-Arm-Like Loop Accelerates Catalysis by Cellobiohydrolases

机译:爪臂状环的赖氨酸突变加速纤维二糖水解酶的催化作用。

获取原文
获取原文并翻译 | 示例
           

摘要

Searching for viable strategies to accelerate the catalytic cycle of glycoside hydrolase family 7 (GH7) cellobiohydrolase I (CBHI)-the workhorse cellulose-degrading enzymes, we have performed a total of 12-mu s molecular dynamics simulations on GH7 CBHI, which brought to light a new mechanism for cellobiose expulsion, coined "claw-arm" action. The loop flanking the product binding site plays the role of a flexible "arm" extending toward cellobiose, and residue Thr389 of this loop acts as a "claw" that captures cellobiose. Five mutations of residue Thr389 were considered to enhance the loop-cellobiose interaction. The lysine mutant was found to significantly accelerate cellobiose expulsion and facilitate polysaccharide-chain translocation. Lysine mutation of Thr393 in Talaromyces emersonii CBHI (TeCel7A) performed similarly. Lysine approaches the catalytic area and stabilizes the Michaelis complex, potentially affecting glycosylation, the rate-limiting step of the catalytic cycle. QM/MM calculations indicate that lysine replacement diminishes the barrier against proton transfer, the crucial step of glycosylation, by 2.3 kcal/mol. Experimental validation was performed using the full-length wild-type (WT) of TeCel7A and its mutants, recombinantly expressed in Pichia pastoris, to degrade the substrates. Compared with the WT, the lysine mutant revealed an associated higher enzymatic reaction rate. Furthermore, cellobiose yield was also increased by lysine mutation, indicating that dissociation of the enzyme from cellulose was accelerated, which largely stems from the enhanced flexibility of the "arm". The present work is envisioned to help design strategies for improving enzymatic activity, while decreasing enzyme cost.
机译:为了寻找可行的策略来加速糖苷水解酶家族7(GH7)纤维二糖水解酶I(CBHI)(即强力纤维素降解酶)的催化循环,我们对GH7 CBHI进行了总共12μs的分子动力学模拟,从而使发明了一种新的纤维二糖排出机制,即“爪臂”作用。产物结合位点两侧的环起向纤维二糖延伸的柔性“臂”的作用,并且该环的残基Thr389充当捕获纤维二糖的“爪”。残基Thr389的五个突变被认为可以增强环-纤维二糖的相互作用。发现赖氨酸突变体显着加速纤维二糖排出并促进多糖链易位。类似地,在Talaromyces emersonii CBHI(TeCel7A)中Thr393的赖氨酸突变进行。赖氨酸接近催化区域并稳定Michaelis配合物,可能影响糖基化反应,即催化循环的限速步骤。 QM / MM计算表明,赖氨酸置换将质子转移的障碍(糖基化的关键步骤)降低了2.3 kcal / mol。使用TeCel7A的全长野生型(WT)及其突变体(在毕赤酵母中重组表达)降解底物进行了实验验证。与野生型相比,赖氨酸突变体显示出更高的酶促反应速率。此外,通过赖氨酸突变也增加了纤维二糖的产量,这表明酶与纤维素的解离被加速了,这很大程度上源于“臂”的增强的柔韧性。设想本工作有助于设计策略以改善酶活性,同时降低酶成本。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第36期|14451-14459|共9页
  • 作者单位

    Nankai Univ State Key Lab Med Chem Biol Tianjin Key Lab Biosensing & Mol Recognit Res Ctr Analyt Sci Coll Chem Tianjin 300071 Peoples R China;

    Univ Lorraine Lab Int Associe CNRS F-54500 Vandoeuvre Les Nancy France|Univ Lorraine Univ Illinois Urbana Champaign LPCT UMR 7019 CNRS F-54500 Vandoeuvre Les Nancy France|Univ Illinois Dept Phys Urbana IL 61801 USA;

    Chinese Acad Sci Key Lab Syst Microbial Biotechnol Tianjin Key Lab Ind Biol Syst & Bioproc Engn Tianjin Inst Ind Biotechnol Tianjin 300308 Peoples R China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号