首页> 外文期刊>Journal of the American Chemical Society >Low-Resistance Molecular Wires Propagate Spin-Polarized Currents
【24h】

Low-Resistance Molecular Wires Propagate Spin-Polarized Currents

机译:低电阻分子线传播自旋极化电流

获取原文
获取原文并翻译 | 示例
           

摘要

Spin based properties, applications, and devices are typically related to inorganic ferromagnetic materials. The development of organic materials for spintronic applications has long been encumbered by its reliance on ferromagnetic electrodes for polarized spin injection. The discovery of the chirality-induced spin selectivity (CISS) effect, in which chiral organic molecules serve as spin filters, defines a marked departure from this paradigm because it exploits soft materials, operates at ambient temperature, and eliminates the need for a magnetic electrode. To date, the CISS effect has been explored exclusively in molecular insulators. Here we combine chiral molecules, which serve as spin filters, with molecular wires that despite not being chiral, function to preserve spin polarization. Self-assembled monolayers (SAMs) of right-handed helical (L-proline)(8) (Pro(8)) and corresponding peptides, N-terminal conjugated to (porphinato)zinc or meso-to-meso ethyne-bridged (porphinato)zinc structures (Pro(8)PZn(n)), were interrogated via magnetic conducting atomic force microscopy (mC-AFM), spin-dependent electrochemistry, and spin Hall devices that measure the spin polarizability that accompanies the charge polarization. These data show that chiral molecules are not required to transmit spin-polarized currents made possible by the CISS mechanism. Measured Hall voltages for Pro(8)PZn(1-3) substantially exceed that determined for the Pro(8) control and increase dramatically as the conjugation length of the achiral PZnn component increases; mC-AFM data underscore that measured spin selectivities increase with an increasing Pro(8)PZn(1-3) N-terminal conjugation. Because of these effects, spin-dependent electrochemical data demonstrate that spin-polarized currents, which trace their genesis to the chiral Pro(8) moiety, propagate with no apparent dephasing over the augmented Pro(8)PZn(n) length scales, showing that spin currents may be transmitted over molecular distances that greatly exceed the length of the chiral moiety that makes possible the CISS effect.
机译:基于自旋的性质,应用和装置通常与无机铁磁材料有关。自旋电子应用的有机材料的发展长期以来一直依赖于极化自旋注入的铁磁电极。手性诱导的自旋选择性(CISS)效应的发现(其中手性有机分子用作自旋过滤器)定义了与该范式的显着背离,因为它利用了柔软的材料,可在环境温度下运行,并且不需要磁性电极。迄今为止,仅在分子绝缘体中研究了CISS效应。在这里,我们将用作自旋过滤器的手性分子与分子线结合起来,尽管它们不是手性的,但仍可保持自旋极化。右旋螺旋(L-脯氨酸)(8)(Pro(8))的自组装单分子层(SAMs)和相应的肽,N端与(卟啉)锌或介孔-介孔乙炔桥接(porphinato)锌结构(Pro(8)PZn(n)),通过电磁原子力显微镜(mC-AFM),自旋相关的电化学和自旋霍尔器件进行询问,该器件可测量伴随电荷极化的自旋极化率。这些数据表明,不需要手性分子来传输由CISS机制可能产生的自旋极化电流。 Pro(8)PZn(1-3)的实测霍尔电压大大超过了Pro(8)对照所确定的霍尔电压,并且随着非手性PZnn组分的共轭长度增加而急剧增加; mC-AFM数据强调了测量的自旋选择性随Pro(8)PZn(1-3)N端缀合的增加而增加。由于这些效应,自旋相关的电化学数据表明,自旋极化的电流(其起源可追溯到手性Pr​​o(8)部分)在扩展的Pro(8)PZn(n)长度尺度上没有明显移相的情况下传播,表明自旋电流可以在分子距离上传输,该分子距离大大超过使CISS效应成为可能的手性部分的长度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号