首页> 外文期刊>Journal of the American Chemical Society >Accelerating the Shuttling in Hydrogen-Bonded Rotaxanes: Active Role of the Axle and the End Station
【24h】

Accelerating the Shuttling in Hydrogen-Bonded Rotaxanes: Active Role of the Axle and the End Station

机译:加速穿梭氢键轮烷的穿梭:车桥和终端站的积极作用

获取原文
获取原文并翻译 | 示例
           

摘要

The relation between the chemical structure and the mechanical behavior of molecular machines is of paramount importance for a rational design of superior nanomachines. Here, we report on a mechanistic study of a nanometer scale translational movement in two bistable rotaxanes. Both rotaxanes consist of a tetra-amide macrocycle interlocked onto a polyether axle. The macrocycle can shuttle between an initial succinamide station and a 3,6-dihydroxy- or 3,6-di-tert -butyl-1,8-naphthalimide end stations. Translocation of the macrocycle is controlled by a hydrogen-bonding equilibrium between the stations. The equilibrium can be perturbed photochemically by either intermolecular proton or electron transfer depending on the system. To the best of our knowledge, utilization of proton transfer from a conventional photoacid for the operation of a molecular machine is demonstrated for the first time. The shuttling dynamics are monitored by means of UV–vis and IR transient absorption spectroscopies. The polyether axle accelerates the shuttling by ∼70% compared to a structurally similar rotaxane with an all-alkane thread of the same length. The acceleration is attributed to a decrease in activation energy due to an early transition state where the macrocycle partially hydrogen bonds to the ether group of the axle. The dihydroxyrotaxane exhibits the fastest shuttling speed over a nanometer distance (τ_(shuttling) ≈ 30 ns) reported to date. The shuttling in this case is proposed to take place via a so-called harpooning mechanism where the transition state involves a folded conformation due to the hydrogen-bonding interactions with the hydroxyl groups of the end station.
机译:分子机器的化学结构与机械行为之间的关系对于合理设计高级纳米机器至关重要。在这里,我们报道了两种双稳态轮烷中纳米级平移运动的机理研究。两种轮烷均由互锁在聚醚轴上的四酰胺大环组成。大环化合物可以在起始的琥珀酰胺站和3,6-二羟基-或3,6-二-叔丁基-1,8-萘二甲酰亚胺末端站之间穿梭。大环的易位是由站之间的氢键平衡控制的。取决于系统,分子间质子或电子转移可通过光化学方式扰动平衡。据我们所知,首次展示了利用传统光酸转移质子来运行分子机器。穿梭动力学通过紫外可见和红外瞬态吸收光谱法进行监测。与结构相同的具有相同长度的全烷烃螺纹的轮烷相比,聚醚桥将穿梭速度提高了约70%。加速归因于由于大环部分氢键合到车轴的醚基团上的早期过渡态而导致的活化能的降低。迄今为止,二羟基轮烷在纳米距离(τ_(shuttling)≈30 ns)上表现出最快的穿梭速度。在这种情况下,穿梭运动是通过所谓的“鱼叉”机制进行的,其中由于氢与末端站的羟基键合,过渡态涉及折叠构象。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号