首页> 外文期刊>Journal of the American Chemical Society >Proton-Coupled Electron Transfer Drives Long-Range Proton Translocation in Bioinspired Systems
【24h】

Proton-Coupled Electron Transfer Drives Long-Range Proton Translocation in Bioinspired Systems

机译:质子耦合电子转移驱动生物启发系统中的远距离质子移位

获取原文
获取原文并翻译 | 示例
           

摘要

Proton-coupled electron transfer (PCET) combines the movement of fundamental charged species to form an essential link between electron- and proton-transport reactions in bioenergetics and catalysis in general. The length scale over which proton transport may occur within PCET processes and the thermodynamic consequences of the resulting proton chemical potential to the oxidation reaction driving these PCET processes have not been generally established. Here we report the design of bioinspired molecules that employ oxidation-reduction processes to move reversibly two, three, and four protons via a Grotthuss-type mechanism along hydrogen-bonded networks up to similar to 16 angstrom in length. These molecules are composed of benzimidazole moieties linking a phenol to the final proton acceptor, a cyclohexylimine. Following electrochemical oxidation of the phenol, the appearance of an infrared band at 1660 cm(-1) signals proton arrival at the terminal basic site. Switching the electrode potential to reducing conditions reverses the proton translocation and resets the structure to the initial species. In addition to mimicking the first step of the iconic PCET process used by the Tyr(z)-His190 redox relay in photosystem II to oxidize water, this work specifically addresses theoretically and experimentally the length scale over which PCET processes may occur. The thermodynamic findings from these redox-driven, bioinspired "proton wires" have implications for understanding and rationally designing pumps for the generation of proton-motive force in artificial and reengineered photosynthesis, as well as for management of proton activity around catalytic sites, including those for water oxidation and oxygen reduction.
机译:质子耦合电子转移(PCET)结合了基本带电物质的运动,从而在生物能学和一般催化作用中的电子和质子传输反应之间形成了必不可少的联系。通常尚未确定质子传输可能在PCET过程中发生的长度尺度,以及由此产生的质子化学势对驱动这些PCET过程的氧化反应的热力学后果。在这里,我们报告生物启发分子的设计,该分子采用氧化还原过程通过格罗特斯型机制沿着氢键网络可逆地移动两个,三个和四个质子,直至长度接近16埃。这些分子由将苯酚连接到最终质子受体环己酰亚胺的苯并咪唑部分组成。苯酚的电化学氧化后,在1660 cm(-1)处出现红外带,表明质子到达末端基本位点。将电极电势切换到还原条件可逆转质子移位,并将结构重置为初始物质。除了模仿光系统II中Tyr(z)-His190氧化还原中继所使用的标志性PCET过程的第一步来氧化水以外,这项工作还特别从理论上和实验上解决了PCET过程可能发生的长度尺度。这些由氧化还原驱动的,受生物启发的“质子线”的热力学发现对理解和合理设计用于人工和重新设计的光合作用中产生质子动力的泵以及对催化位点(包括那些位点)处的质子活性管理的意义用于水氧化和氧还原。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号