首页> 外文期刊>Journal of the American Chemical Society >Lowering Charge Transfer Barrier of LiMn_2O_4 via Nickel Surface Doping To Enhance Li~+ Intercalation Kinetics at Subzero Temperatures
【24h】

Lowering Charge Transfer Barrier of LiMn_2O_4 via Nickel Surface Doping To Enhance Li~+ Intercalation Kinetics at Subzero Temperatures

机译:零表面温度下通过镍表面掺杂降低LiMn_2O_4的电荷转移势垒,以增强Li〜+嵌入动力学

获取原文
获取原文并翻译 | 示例
           

摘要

Sluggish interfacial kinetics leading to considerable loss of energy and power capabilities at subzero temperatures is still a big challenge to overcome for Li-ion batteries operating under extreme environmental conditions. Herein, using LiMn2O4 as the model system, we demonstrated that nickel surface doping to construct a new interface owning lower charge transfer energy barrier, could effectively facilitate the interfacial process and inhibit the capacity loss with decreased temperature. Detailed investigations on the charge transfer process via electrochemical impedance spectroscopy and density functional theory calculation, indicate that the interfacial chemistry tuning could effectively lower the activation energy of charge transfer process by nearly 20%, endowing the cells with similar to 75.4% capacity at -30 degrees C, far surpassing the hardly discharged unmodified counterpart. This control of surface chemistry to tune interfacial dynamics proposes insights and design ideas for batteries to well survive under thermal extremes.
机译:对于在极端环境条件下运行的锂离子电池而言,缓慢的界面动力学导致在零以下温度下能量和功率功能的显着损失仍然是一大挑战。本文以LiMn2O4为模型体系,证明了镍表面掺杂构建具有较低电荷转移能垒的新界面,可以有效地促进界面过程,抑制温度降低引起的容量损失。通过电化学阻抗谱和密度泛函理论计算对电荷转移过程进行的详细研究表明,界面化学调节可有效降低电荷转移过程的活化能近20%,使-30度时的电池容量接近75.4%摄氏度,远远超过了几乎没有排放的未修改的同类产品。这种控制表面化学性质以调节界面动力学的方法提出了一些见解和设计思路,以使电池能够在极端温度下良好地存活。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号