首页> 外文期刊>Journal of the American Chemical Society >Mechanistically Guided Predictive Models for Ligand and Initiator Effects in Copper-Catalyzed Atom Transfer Radical Polymerization (Cu-ATRP)
【24h】

Mechanistically Guided Predictive Models for Ligand and Initiator Effects in Copper-Catalyzed Atom Transfer Radical Polymerization (Cu-ATRP)

机译:机械引导的铜催化原子转移自由基聚合(Cu-ATRP)中的配体和引发剂效应的预测模型

获取原文
获取原文并翻译 | 示例
           

摘要

Copper-catalyzed atom transfer radical polymerization (Cu-ATRP) is one of the most widely used controlled radical polymerization techniques. Notwithstanding the extensive mechanistic studies in the literature, the transition states of the activation/deactivation of the growing polymer chain, a key equilibrium in Cu-ATRP, have not been investigated computationally. Therefore, the understanding of the origin of ligand and initiator effects on the rates of activation/deactivation is still limited. Here, we present the first computational analysis of Cu-ATRP activation transition states to reveal factors that affect the rates of activation and deactivation. The Br atom transfer between the polymer chain and the Cu catalyst occurs through an unusual bent geometry that involves pronounced interactions between the polymer chain end and the ancillary ligand on the Cu catalyst. Therefore, the rates of activation/deactivation are determined by both the electronic properties of the Cu catalyst and the ligand-initiator steric repulsions. In addition, our calculations revealed the important role of ligand backbone flexibility on the activation. These theoretical analyses led to the identification of three chemically meaningful descriptors, namely HOMO energy of the catalyst (E-HOMO), percent buried volume (V-bur%), and distortion energy of the catalyst (Delta E-dist), to describe the electronic, steric, and flexibility effects on reactivity, respectively. A robust and simple predictive model for ligand effect on reactivity is thereby established by correlating these three descriptors with experimental activation rate constants using multivariate linear regression. Validation using a structurally diverse set of ligands revealed the average error is less than +/- 2 kcal/mol compared to the experimentally derived activation energies. The same approach was also applied to develop a predictive model for reactivity of different alkyl halide initiators using R-X bond dissociation energy (BDE) and Cu-X halogenophilicity as descriptors.
机译:铜催化原子转移自由基聚合(Cu-ATRP)是应用最广泛的受控自由基聚合技术之一。尽管在文献中进行了广泛的机理研究,但是尚未通过计算研究增长中的聚合物链的活化/失活的过渡态,Cu-ATRP中的关键平衡。因此,对配体和引发剂对活化/失活速率的影响的了解仍然有限。在这里,我们介绍Cu-ATRP激活过渡态的第​​一个计算分析,以揭示影响激活和失活速率的因素。聚合物链和Cu催化剂之间的Br原子转移通过异常弯曲的几何结构发生,该几何结构涉及聚合物链末端与Cu催化剂上辅助配体之间的明显相互作用。因此,活化/失活的速率由Cu催化剂的电子性质和配体-引发剂的空间排斥力两者决定。另外,我们的计算揭示了配体骨架柔性对活化的重要作用。这些理论分析导致确定了三个化学意义上的描述符,即催化剂的HOMO能量(E-HOMO),掩埋体积百分比(V-bur%)和催化剂的变形能(ΔE-dist),以描述电子,空间和柔韧性分别对反应性的影响。通过使用多元线性回归将这三个描述子与实验激活速率常数相关联,从而建立了一个强大而简单的配体对反应性影响的预测模型。使用一组结构多样的配体进行的验证显示,与实验得出的活化能相比,平均误差小于+/- 2 kcal / mol。使用R-X键离解能(BDE)和Cu-X嗜盐性作为描述符,也采用了相同的方法来开发不同烷基卤化物引发剂反应性的预测模型。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第18期|7486-7497|共12页
  • 作者单位

    Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA|Univ Pittsburgh, Computat Modeling & Simulat Program, Pittsburgh, PA 15260 USA;

    Carnegie Mellon Univ, Dept Chem, 4400 5th Ave, Pittsburgh, PA 15213 USA;

    Carnegie Mellon Univ, Dept Chem, 4400 5th Ave, Pittsburgh, PA 15213 USA;

    Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA;

    Australian Natl Univ, Res Sch Chem, ARC Ctr Excellence Electromat Sci, Canberra, ACT 2601, Australia;

    Carnegie Mellon Univ, Dept Chem, 4400 5th Ave, Pittsburgh, PA 15213 USA;

    Univ Pittsburgh, Dept Chem, Pittsburgh, PA 15260 USA|Univ Pittsburgh, Dept Chem & Petr Engn, Pittsburgh, PA 15261 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号