首页> 外文期刊>Journal of the American Chemical Society >Intrinsic Activity of Oxygen Evolution Catalysts Probed at Single CoFe_2O_4 Nanoparticles
【24h】

Intrinsic Activity of Oxygen Evolution Catalysts Probed at Single CoFe_2O_4 Nanoparticles

机译:在单个CoFe_2O_4纳米颗粒上探测到的析氧催化剂的本征活性

获取原文
获取原文并翻译 | 示例
           

摘要

Identifying the intrinsic electrocatalytic activity of nanomaterials is challenging, as their characterization usually requires additives and binders whose contributions are difficult to dissect. Herein, we use nano impact electrochemistry as an additive-free method to overcome this problem. Due to the efficient mass transport at individual catalyst nanoparticles, high current densities can be realized. High-resolution bright-field transmission electron microscopy and selected area diffraction studies of the catalyst particles before and after the experiments provide valuable insights in the transformation of the nanomaterials during harsh oxygen evolution reaction (OER) conditions. We demonstrate this for 4 nm sized CoFe2O4 spinel nanoparticles. It is revealed that these particles retain their size and crystal structure even after OER at current densities as high as several kA.m-(2). The steady-state current scales with the particle size distribution and is limited by the diffusion of produced oxygen away from the particle. This versatilely applicable method provides new insights into intrinsic nanocatalyst activities, which is key to the efficient development of improved and precious metal-free catalysts for renewable energy technologies.
机译:鉴定纳米材料的固有电催化活性是具有挑战性的,因为其表征通常需要添加剂和粘合剂,其贡献难以剖析。在这里,我们使用纳米冲击电化学作为无添加剂的方法来克服这个问题。由于在各个催化剂纳米颗粒处的有效质量传递,所以可以实现高电流密度。实验前后,对催化剂颗粒进行高分辨率的明场透射电子显微镜和选定区域衍射研究,为在苛刻的氧气析出反应(OER)条件下纳米材料的转变提供了有价值的见解。我们证明了4 nm大小的CoFe2O4尖晶石纳米粒子。揭示了即使在电流密度高达几kA.m-(2)的OER之后,这些颗粒仍保持其尺寸和晶体结构。稳态电流与粒径分布成比例,并受到所产生的氧从粒子中扩散出来的限制。这种用途广泛的方法为固有的纳米催化剂活性提供了新的见识,这对于有效开发可再生能源技术的改进的无贵金属催化剂至关重要。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第23期|9197-9201|共5页
  • 作者单位

    Ruhr Univ Bochum, Fac Chem & Biochem, Analyt Chem 2, D-44801 Bochum, Germany;

    Ruhr Univ Bochum, Fac Chem & Biochem, Analyt Chem 2, D-44801 Bochum, Germany;

    Ruhr Univ Bochum, Fac Chem & Biochem, Analyt Chem 2, D-44801 Bochum, Germany;

    Ruhr Univ Bochum, Fac Chem & Biochem, Analyt Chem 2, D-44801 Bochum, Germany;

    Univ Duisburg Essen, Fac Chem, Univ Str 7, D-45141 Essen, Germany|Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CENIDE, Univ Str 7, D-45141 Essen, Germany;

    Univ Duisburg Essen, Fac Chem, Univ Str 7, D-45141 Essen, Germany|Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CENIDE, Univ Str 7, D-45141 Essen, Germany;

    Ruhr Univ Bochum, Fac Chem & Biochem, Analyt Chem 2, D-44801 Bochum, Germany;

    IFW Dresden, Helmholtzstr 20, D-01069 Dresden, Germany|Tech Univ Dresden, Dresden Ctr Nanoanal, D-01062 Dresden, Germany;

    IFW Dresden, Helmholtzstr 20, D-01069 Dresden, Germany;

    Univ Duisburg Essen, Fac Chem, Univ Str 7, D-45141 Essen, Germany|Univ Duisburg Essen, Ctr Nanointegrat Duisburg Essen CENIDE, Univ Str 7, D-45141 Essen, Germany;

    Ruhr Univ Bochum, Fac Chem & Biochem, Analyt Chem 2, D-44801 Bochum, Germany;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号