首页> 外文期刊>Journal of the American Chemical Society >Biophysical Characterization of a Disabled Double Mutant of Soybean Lipoxygenase: The 'Undoing' of Precise Substrate Positioning Relative to Metal Cofactor and an Identified Dynamical Network
【24h】

Biophysical Characterization of a Disabled Double Mutant of Soybean Lipoxygenase: The 'Undoing' of Precise Substrate Positioning Relative to Metal Cofactor and an Identified Dynamical Network

机译:大豆脂氧合酶双残残体的生物物理特性:相对于金属辅因子和确定的动态网络的精确底物定位的“撤销”

获取原文
获取原文并翻译 | 示例
           

摘要

Soybean lipoxygenase (SLO) has served as a prototype for understanding the molecular origin of enzymatic rate accelerations. The double mutant (DM) L546A/L754A is considered a dramatic outlier, due to the unprecedented size and near temperature independence of its primary kinetic isotope effect, low catalytic efficiency, and elevated enthalpy of activation. To uncover the physical basis of these features, we herein apply three structural probes: hydrogen deuterium exchange mass spectrometry, room-temperature X-ray crystallography and EPR spectroscopy on four SLO variants (wild-type (WT) enzyme, DM, and the two parental single mutants, L546A and L754A). DM is found to incorporate features of each parent, with the perturbation at position 546 predominantly influencing thermally activated motions that connect the active site to a protein solvent interface, while mutation at position 754 disrupts the ligand field and solvation near the cofactor iron. However, the expanded active site in DM leads to more active site water molecules and their associated hydrogen bond network, and the individual features from L546A and L754A alone cannot explain the aggregate kinetic properties for DM. Using recently published QM/MM-derived ground-state SLO-substrate complexes for WT and DM, together with the thorough structural analyses presented herein, we propose that the impairment of DM is the combined result of a repositioning of the reactive carbon of linoleic acid substrate with regard to both the iron cofactor and a catalytically linked dynamic region of protein.
机译:大豆脂氧合酶(SLO)已成为了解酶促速率的分子起源的原型。双突变体(DM)L546A / L754A被认为是一个异常的异常值,这归因于其主要动力学同位素效应的空前大小和接近温度的独立性,较低的催化效率和较高的活化焓。为了揭示这些特征的物理基础,我们在此应用了三种结构探针:氢氘交换质谱法,室温X射线晶体学和EPR光谱法对四种SLO变体(野生型(WT)酶,DM和两种亲本单突变体,L546A和L754A)。发现DM合并了每个亲本的特征,位置546处的扰动主要影响将活性位点连接到蛋白质溶剂界面的热激活运动,而位置754处的突变破坏了配体场和辅因子铁附近的溶剂化。但是,DM中扩展的活性位点会导致更多的活性位点水分子及其相关的氢键网络,仅L546A和L754A的单个特征不能解释DM的总体动力学性质。使用最近发表的针对WT和DM的QM / MM衍生的基态SLO-底物复合物以及本文提供的详尽的结构分析,我们认为DM的损伤是亚油酸活性炭重新定位的综合结果在铁辅因子和蛋白质催化连接的动态区域方面都是底物。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2019年第4期|1555-1567|共13页
  • 作者单位

    Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA|Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA|Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA|Corvus Pharmaceut Inc, 863 Mitten Rd 102, Burlingame, CA 94010 USA;

    Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA|Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA|Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA|East Carolina Univ, Dept Chem, Greenville, NC 27858 USA;

    Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94158 USA;

    Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA|Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA;

    Univ Calif Davis, Dept Chem, Davis, CA 95695 USA;

    Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA|Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA|Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA|Riffyn, Oakland, CA 94612 USA;

    Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA|Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA|Univ Cambridge, Sch Clin Med, Dept Med, Cambridge CB2 0SP, England;

    Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA;

    Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA|Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA;

    Univ Calif Davis, Dept Chem, Davis, CA 95695 USA;

    Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94158 USA;

    Univ Calif Berkeley, Calif Inst Quantitat Biosci, Berkeley, CA 94720 USA|Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA|Univ Calif Berkeley, Dept Mol & Cell Biol, 229 Stanley Hall, Berkeley, CA 94720 USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号