首页> 外文期刊>Journal of the American Chemical Society >Investigation of the Mechanism of the Cell Wall DD-Carboxypeptidase Reaction of Penicillin-Binding Protein 5 of Escherichia coli by Quantum Mechanics/Molecular Mechanics Calculations
【24h】

Investigation of the Mechanism of the Cell Wall DD-Carboxypeptidase Reaction of Penicillin-Binding Protein 5 of Escherichia coli by Quantum Mechanics/Molecular Mechanics Calculations

机译:量子力学/分子力学计算研究大肠杆菌青霉素结合蛋白5的细胞壁DD-羧肽酶反应机理

获取原文
获取原文并翻译 | 示例
           

摘要

Penicillin-binding protein 5 (PBP 5) of Escherichia coli hydrolyzes the terminal D-Ala-D-Ala peptide bond of the stem peptides of the cell wall peptidoglycan. The mechanism of PBP 5 catalysis of amide bond hydrolysis is initial acylation of an active site serine by the peptide substrate, followed by hydrolytic deacylation of this acyl-enzyme intermediate to complete the turnover. The microscopic events of both the acylation and deacylation half-reactions have not been studied. This absence is addressed here by the use of explicit-solvent molecular dynamics simulations and ONIOM quantum mechanics/molecular mechanics (QM/MM) calculations. The potential-energy surface for the acylation reaction, based on MP2/ 6-31+G(d) calculations, reveals that Lys47 acts as the general base for proton abstraction from Ser44 in the serine acylation step. A discrete potential-energy minimum for the tetrahedral species is not found. The absence of such a minimum implies a conformational change in the transition state, concomitant with serine addition to the amide carbonyl, so as to enable the nitrogen atom of the scissile bond to accept the proton that is necessary for progression to the acyl-enzyme intermediate. Molecular dynamics simulations indicate that transiently protonated Lys47 is the proton donor in tetrahedral intermediate collapse to the acyl-enzyme species. Two pathways for this proton transfer are observed. One is the direct migration of a proton from Lys47. The second pathway is proton transfer via an intermediary water molecule. Although the energy barriers for the two pathways are similar, more conformers sample the latter pathway. The same water molecule that mediates the Lys47 proton transfer to the nitrogen of the departing D-Ala is well positioned, with respect to the Lys47 amine, to act as the hydrolytic water in the deacylation step. Deacylation occurs with the formation of a tetrahedral intermediate over a 24 kcal-mo~(-1) barrier. This barrier is approximately 2 kcal·mol~(-1) greater than the barrier (22 kcal·mol~(-1)) for the formation of the tetrahedral species in acylation. The potential-energy surface for the collapse of the deacylation tetrahedral species gives a 24 kcal·mol~(-1) higher energy species for the product, signifying that the complex would readily reorganize and pave the way for the expulsion of the product of the reaction from the active site and the regeneration of the catalyst. These computational data dovetail with the knowledge on the reaction from experimental approaches.
机译:大肠杆菌的青霉素结合蛋白5(PBP 5)水解细胞壁肽聚糖干肽的末端D-Ala-D-Ala肽键。 PBP 5催化酰胺键水解的机理是通过肽底物对活性位点丝氨酸进行初始酰化,然后对该酰基酶中间体进行水解脱酰以完成周转。尚未研究酰化和脱酰半反应的微观事件。通过使用显式溶剂分子动力学模拟和ONIOM量子力学/分子力学(QM / MM)计算,可以解决此问题。根据MP2 / 6-31 + G(d)计算得出的酰化反应的势能面表明,Lys47充当丝氨酸酰化步骤中从Ser44提取质子的一般基础。没有发现四面体物种的离散势能最小值。没有这样的最小值意味着过渡态的构象变化,同时向酰胺羰基上添加丝氨酸,从而使易裂键的氮原子接受质子,这是发展为酰基酶中间体所必需的。分子动力学模拟表明,瞬时质子化的Lys47是质子供体,在四面体中间塌陷为酰基酶。观察到该质子转移的两种途径。一种是质子从Lys47直接迁移。第二个途径是质子通过中间水分子转移。尽管这两种途径的能垒相似,但更多的构象者对后一种途径进行了采样。相对于Lys47胺,介导将Lys47质子转移到离去的D-Ala的氮中的同一水分子在脱酰步骤中被定位为水解水。脱酰作用发生在24 kcal-mo〜(-1)势垒上形成四面体中间体。该势垒比在酰化中形成四面体物种的势垒(22 kcal·mol·(-1))大约大2 kcal·mol·(-1)。脱酰基四面体物质崩溃的势能表面为产物提供了24 kcal·mol〜(-1)更高的能量种类,这表明该络合物将很容易重组并为驱逐产物的途径铺平道路。活性部位的反应和催化剂的再生。这些计算数据与来自实验方法的反应知识相吻合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号