首页> 外文期刊>Journal of the American Chemical Society >Ultrafast Electron Transfer Dynamics at NH_3/Cu(111) Interfaces: Determination of the Transient Tunneling Barrier
【24h】

Ultrafast Electron Transfer Dynamics at NH_3/Cu(111) Interfaces: Determination of the Transient Tunneling Barrier

机译:NH_3 / Cu(111)界面上的超快电子传递动力学:瞬态隧穿势垒的确定

获取原文
获取原文并翻译 | 示例
           

摘要

Electron transfer (ET) dynamics at molecule-metal interfaces plays a key role in various fields as surface photochemistry or the development of molecular electronic devices. The bare transfer process is often described in terms of tunneling through an interfacial barrier that depends on the distance of the excited electron to the metal substrate. However, a quantitative characterization of such potential barriers is still lacking. In the present time-resolved two-photon photoemission (2PPE) study of amorphous NH_3 layers on Cu(111) we show that photoinjection of electrons is followed by charge solvation leading to the formation of a transient potential barrier at the interface that determines the ET to the substrate. We demonstrate that the electrons are localized at the ammonia-vacuum interface and that the ET rate depends exponentially on the NH_33 layer thickness with inverse range parameters β between 1.8 and 2.7 nm~(-1). Systematic analysis of this time-resolved and layer thickness-dependent data finally enables the determination of the temporal evolution of the interfacial potential barrier using a simple model description. We find that the tunneling barrier forms after τe = 180 fs and subsequently rises more than three times faster than the binding energy gain of the solvated electrons.
机译:分子-金属界面上的电子转移(ET)动力学在表面光化学或分子电子设备的发展等各个领域中均起着关键作用。裸传输过程通常以隧穿穿过界面势垒的方式来描述,该势垒取决于激发电子到金属基板的距离。但是,仍缺乏对这些潜在障碍的定量表征。在目前对Cu(111)上的非晶NH_3层进行时间分辨的两光子光发射(2PPE)研究中,我们表明电子的光注入之后被电荷溶剂化,从而导致在确定ET的界面处形成瞬态势垒到基板上。我们证明了电子位于氨-真空界面,并且ET速率与NH_33层厚度成指数关系,其反距离参数β在1.8和2.7 nm〜(-1)之间。最后,通过对该时间分辨的和层厚度相关的数据进行系统分析,可以使用简单的模型描述确定界面势垒的时间演化。我们发现,隧穿势垒在τe = 180 fs之后形成,并随后以比溶剂化电子的结合能增益快三倍的速度上升。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号