首页> 外文期刊>Journal of the American Chemical Society >Interfacial Engineering of Organic Nanofibril Heterojunctions into Highly Photoconductive Materials
【24h】

Interfacial Engineering of Organic Nanofibril Heterojunctions into Highly Photoconductive Materials

机译:有机纳米原纤维异质结到高光电导材料的界面工程

获取原文
获取原文并翻译 | 示例
           

摘要

Photoconductive organic materials have gained increasing interest in various optoelectronics, such as sensors, photodetectors, and photovoltaics. However, the availability of such materials is very limited due to their intrinsic low charge carrier density and mobility. Here, we present a simple approach based on nanofibril heterojunction to achieve high photoconductivity with fast photoresponse, that is, interfacial engineering of electron donor (D) coating onto acceptor (A) nanofibers via optimization of hydrophobic interaction between long alkyl side-chains. Such nanofibril heterojunctions possess two prominent features that are critical for efficient photocurrent generation: the nanofibers both create a large D/A interface for increased charge separation and act as long-range transport pathways for photogenerated charge carriers toward the electrodes, and the alkyl groups employed not only enable effective surface adsorption of D molecules on the nanofibers for effective electron-transfer communication, but also spatially separate the photogenerated charge carriers to prevent their recombination. The reported approach represents a simple, adaptable method that allows for the development and optimization of photoconductive organic materials.
机译:光电导有机材料对各种光电器件(例如传感器,光电探测器和光电器件)的兴趣日益增加。然而,由于其固有的低载流子密度和迁移率,这种材料的可用性非常有限。在这里,我们提出了一种基于纳米原纤异质结的简单方法,可以实现具有快速光响应的高光电导率,即通过优化长烷基侧链之间的疏水相互作用,将电子供体(D)涂覆到受体(A)纳米纤维上的界面工程。此类纳米原纤维异质结具有两个重要特征,这些特征对于有效产生光电流至关重要:纳米纤维既可形成较大的D / A界面以增加电荷分离,又可作为光生电荷载流子向电极的长距离传输路径,并且采用烷基不仅可以使D分子在纳米纤维上有效地表面吸附,从而实现有效的电子传输通讯,而且还可以在空间上分隔光生电荷载流子以防止其重组。报道的方法代表了一种简单,适用的方法,可用于开发和优化光电导有机材料。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2011年第4期|p.1087-1091|共5页
  • 作者单位

    Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84108, United States;

    Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84108, United States;

    Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84108, United States;

    Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84108, United States;

    Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84108, United States;

    Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84108, United States;

    Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84108, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号