首页> 外文期刊>Journal of the American Chemical Society >Slow Unfolded-State Structuring in AcyL-CoA Binding Protein Folding Revealed by Simulation and Experiment
【24h】

Slow Unfolded-State Structuring in AcyL-CoA Binding Protein Folding Revealed by Simulation and Experiment

机译:通过模拟和实验揭示了AcyL-CoA结合蛋白折叠中缓慢的未折叠状态结构。

获取原文
获取原文并翻译 | 示例
           

摘要

Protein folding is a fundamental process in biology, key to understanding many human diseases. Experimentally, proteins often appear to fold via simple two- or three-state mechanisms involving mainly native-state interactions, yet recent network models built from atomistic simulations of small proteins suggest the existence of many possible metastable states and folding pathways. We reconcile these two pictures in a combined experimental and simulation study of acyl-coenzyme A binding protein (ACBP), a two-state folder (folding time ~10 ms) exhibiting residual unfolded-state structure, and a putative early folding intermediate. Using single-molecule FRET in conjunction with side-chain mutagenesis, we first demonstrate that the denatured state of ACBP at near-zero denaturant is unusually compact and enriched in long-range structure that can be perturbed by discrete hydrophobic core mutations. We then employ ultrafast laminar-flow mixing experiments to study the folding kinetics of ACBP on the microsecond time scale. These studies, along with Trp-Cys quenching measurements of unfolded-state dynamics, suggest that unfolded-state structure forms on a surprisingly slow (~100 μs) time scale, and that sequence mutations strikingly perturb both time-resolved and equilibrium smFRET measurements in a similar way. A Markov state model (MSM) of the ACBP folding reaction, constructed from over 30 ms of molecular dynamics trajectory data, predicts a complex network of metastable stables, residual unfolded-state structure, and kinetics consistent with experiment but no well-defined intermediate preceding the main folding barrier. Taken together, these experimental and simulation results suggest that the previously characterized fast kinetic phase is not due to formation of a barrier-limited intermediate but rather to a more heterogeneous and slow acquisition of unfolded-state structure.
机译:蛋白质折叠是生物学的基本过程,是理解许多人类疾病的关键。在实验上,蛋白质通常看起来是通过简单的两态或三态机制折叠的,该机制主要涉及天然状态之间的相互作用,但是最近由小蛋白质的原子模拟建立的网络模型表明存在许多可能的亚稳态和折叠途径。我们在酰基辅酶A结合蛋白(ACBP),呈现残余残留未折叠状态结构的两态文件夹(折叠时间〜10 ms)和假定的早期折叠中间体的组合实验和模拟研究中协调了这两张图片。使用单分子FRET结合侧链诱变,我们首先证明ACBP在接近零的变性剂上的变性状态异常紧凑,并且富含可被离散的疏水性核突变干扰的远距离结构。然后,我们采用超快速层流混合实验来研究ACBP在微秒时间尺度上的折叠动力学。这些研究以及未折叠状态动力学的Trp-Cys猝灭测量表明,未折叠状态结构在令人惊讶的缓慢(〜100μs)时间尺度上形成,并且序列突变显着干扰了时间分辨和平衡smFRET测量。类似的方式。由超过30毫秒的分子动力学轨迹数据构建的ACBP折叠反应的马尔可夫状态模型(MSM),预测了与实验一致的复杂的亚稳态稳定网络,残余未折叠状态结构和动力学网络,但没有明确定义的中间体主要的折叠屏障。综上所述,这些实验和模拟结果表明,先前表征的快速动力学相不是由于形成势垒受限的中间体,而是由于更加异质且缓慢地获得了未折叠状态的结构。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2012年第30期|p.12565-12577|共13页
  • 作者单位

    Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States Department of Chemistry, Temple University, Philadelphia, PA;

    Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095-1569, United States;

    Department of Mechanical Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong;

    Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States Department of Applied and Engineering Physics, Cornell University, Ithaca, NY;

    Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States Advanced Photonics Center, Southeast University, Nanjing 210096, China;

    Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States Physikalisch-Chemisches Institut, Universitat Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland;

    Department of Chemistry, Stanford University, Stanford, California 94305-5080, United States Departments of Chemistry and Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA;

    Department of Bioengineering, Stanford University, Stanford, California 94305-5080, United States;

    NSF Center for Biophotonics Science and Technology, University of California, Davis, Sacramento, California 95817, United States;

    Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, United States;

    Department of Chemistry and Biochemistry Department of Physiology California Nanosystems Institute, University of California, Los Angeles, Los Angeles, California, United States;

    Departments of Chemistry and Structural Biology, Stanford University, Stanford, California 94305-5080, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号