首页> 外文期刊>Journal of the American Chemical Society >Superconducting Phases in Potassium-Intercalated Iron Selenides
【24h】

Superconducting Phases in Potassium-Intercalated Iron Selenides

机译:嵌入钾的硒化铁中的超导相

获取原文
获取原文并翻译 | 示例
           

摘要

The ubiquitous coexistence of majority insulating 245 phases and minority superconducting (SC) phases in A_xFe_(2-y)Se_2 (A = K, Cs, Rb, TI/Rb, TI/K) formed by high-temperature routes makes pure SC phases highly desirable for studying the intrinsic properties of this SC family. Here we report that there are at least two pure SC phases, K_xFe_2Se_2(NH_3)_y (x ≈ 0.3 and 0.6), determined mainly by potassium concentration in the K-intercalated iron selenides formed via the liquid ammonia route. K_(0.3)Fe_2Se_2(NH_3)_(0.47) corresponds to the 44 K phase with lattice constant c = 15.56(1) A and K_(0.6)Fe_2Se_2(NH_3)_(0.37) to the 30 K phase with c = 14.84(1) A. With higher potassium doping, the 44 K phase can be converted into the 30 K phase. NH_3 has little, if any, effect on superconductivity. Thus, the conclusions should apply to both K_(0.3)Fe_2Se_2 and K_(0.6)Fe_2Se_2 SC phases. K_(0.3)Fe_2Se_2(NH_3)_(0.47) and K_(0.6)Fe_2Se_2(NH_3)_(0.37) stand out among known superconductors as their structures are stable only at particular potassium doping levels, and hence the variation of T_c with doping is not dome-like.
机译:通过高温途径形成的A_xFe_(2-y)Se_2(A = K,Cs,Rb,TI / Rb,TI / K)中的多数绝缘245相和少数超导(SC)普遍存在非常需要研究此SC系列的内在特性。在这里,我们报告至少有两个纯SC相,K_xFe_2Se_2(NH_3)_y(x≈0.3和0.6),主要由通过液氨途径形成的K插入的硒化铁中的钾浓度决定。 K_(0.3)Fe_2Se_2(NH_3)_(0.47)对应于晶格常数c = 15.56(1)A的44 K相,K_(0.6)Fe_2Se_2(NH_3)_(0.37)对应于c = 14.84的30 K相(1)A.钾掺杂较高时,可以将44 K相转换为30 K相。 NH_3对超导几乎没有影响。因此,这些结论应适用于K_(0.3)Fe_2Se_2和K_(0.6)Fe_2Se_2 SC相。 K_(0.3)Fe_2Se_2(NH_3)_(0.47)和K_(0.6)Fe_2Se_2(NH_3)_(0.37)在已知的超导体中脱颖而出,因为它们的结构仅在特定的钾掺杂水平下稳定,因此T_c随掺杂的变化不是圆顶状的。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2013年第8期|2951-2954|共4页
  • 作者单位

    Research & Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    Research & Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    Research & Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    Research & Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    Research & Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    Research & Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    Research & Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    Research & Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

    Research & Development Center for Functional Crystals, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号