首页> 外文期刊>Journal of the American Chemical Society >Room-Temperature Polar Ferromagnet ScFeO_3 Transformed from a High-Pressure Orthorhombic Perovskite Phase
【24h】

Room-Temperature Polar Ferromagnet ScFeO_3 Transformed from a High-Pressure Orthorhombic Perovskite Phase

机译:高压正交晶系钙钛矿相转化的室温极性铁磁体ScFeO_3

获取原文
获取原文并翻译 | 示例
           

摘要

Multiferroic materials have been the subject of intense study, but it remains a great challenge to synthesize those presenting both magnetic and ferroelectric polarizations at room temperature. In this work, we have successfully obtained LiNbO_3-type ScFeO_3, a metastable phase converted from the orthorhombic perovskite formed under 15 Gpa at elevated temperatures. A combined structure analysis by synchrotron X-ray and neutron powder diffraction and high-angle annular dark-field scanning transmission electron microscopy imaging reveals that this compound adopts the polar R3c symmetry with a fully ordered arrangement of trivalent Sc and Fe ions, forming highly distorted ScO_6 and FeO_6 octahedra. The calculated spontaneous polarization along the hexagonal c-axis is as large as 100 μC/cm~2. The magnetic studies show that LiNbO_3-type ScFeO_3 is a weak ferromagnet with T_N = 545 K due to a canted G-type antiferromagnetic ordering of Fe~(3+) spins, representing the first example of LiNbO_3-type oxides with magnetic ordering far above room temperature. A comparison of the present compound and rare-earth orthorhombic perovskites RFeO_3 (R = La-Lu and Y), all of which possess the corner-shared FeO_6 octahedral network, allows us to find a correlation between T_N and the Fe-O-Fe bond angle, indicating that the A-site cation-size-dependent octahedral tilting dominates the magnetic transition through the Fe-O-Fe superexchange interaction. This work provides a general and versatile strategy to create materials in which ferroelectricity and ferromagnetism coexist at high temperatures.
机译:多铁材料一直是研究的主题,但是在室温下合成同时呈现磁极化和铁电极化的材料仍然是一个巨大的挑战。在这项工作中,我们成功地获得了LiNbO_3型ScFeO_3,它是由在15 Gpa高温下形成的正交晶钙钛矿转化而成的亚稳态相。通过同步加速器X射线和中子粉末衍射以及高角度环形暗场扫描透射电子显微镜成像的组合结构分析表明,该化合物采用极性R3c对称性,三价Sc和Fe离子完全有序排列,形成高度失真ScO_6和FeO_6八面体。沿六边形c轴计算的自发极化高达100μC/ cm〜2。磁性研究表明,由于Fe〜(3+)自旋的G型反铁磁有序排列,LiNbO_3型ScFeO_3是T_N = 545 K的弱铁磁体,代表了LiNbO_3型氧化物的第一个例子室内温度。比较本发明化合物和稀土正交晶体钙钛矿RFeO_3(R = La-Lu和Y),它们都具有角共享的FeO_6八面体网络,可以使我们找到T_N和Fe-O-Fe之间的相关性。键角,表明A位阳离子大小依赖的八面体倾斜通过Fe-O-Fe超交换相互作用主导了磁跃迁。这项工作提供了一种通用且通用的策略来创建在高温下铁电和铁磁共存的材料。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2014年第43期|15291-15299|共9页
  • 作者单位

    Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan;

    Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan;

    Nanoscience and Nanotechnology Research Center, Osaka Prefecture University, 1-2 Gakuen-cho, Sakai, Osaka 599-8531, Japan,PRESTO, Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo 102-0075, Japan;

    Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan;

    Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States;

    Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States;

    Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States;

    School of Physics, Monash University, Melbourne, Victoria 3800, Australia;

    Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan,The Hakubi Center for Advanced Research, Kyoto University, Yoshida-Ushinomiya-cho, Sakyo-ku, Kyoto 606-8302, Japan;

    Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan;

    Bragg Institute, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, New South Wales 2234, Australia;

    Bragg Institute, Australian Nuclear Science and Technology Organisation, PMB 1, Menai, New South Wales 2234, Australia;

    Geodynamics Research Center, Ehime University, 2-5, Bunkyo-Cho, Matsuyama 790-8577, Japan;

    Materials Research Institute and Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States;

    Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号