首页> 外文期刊>Journal of the American Chemical Society >High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation
【24h】

High-Performance Ionic Diode Membrane for Salinity Gradient Power Generation

机译:用于盐度梯度发电的高性能离子二极管膜

获取原文
获取原文并翻译 | 示例
           

摘要

Salinity difference between seawater and river water is a sustainable energy resource that catches eyes of the public and the investors in the background of energy crisis. To capture this energy, interdisciplinary efforts from chemistry, materials science, environmental science, and nanotechnology have been made to create efficient and economically viable energy conversion methods and materials. Beyond conventional membrane-based processes, technological breakthroughs in harvesting salinity gradient power from natural waters are expected to emerge from the novel fluidic transport phenomena on the nanoscale. A major challenge toward real-world applications is to extrapolate existing single-channel devices to macroscopic materials. Here, we report a membrane-scale nanofluidic device with asymmetric structure, chemical composition, and surface charge polarity, termed ionic diode membrane (IDM), for harvesting electric power from salinity gradient. The IDM comprises heterojunctions between mesoporous carbon (pore size ~7 nm, negatively charged) and macroporous alumina (pore size ~80 nm, positively charged). The meso-/macroporous membrane rectifies the ionic current with distinctly high ratio of ca. 450 and keeps on rectifying in high-concentration electrolytes, even in saturated solution. The selective and rectified ion transport furthermore sheds light on salinity-gradient power generation. By mixing artificial seawater and river water through the IDM, substantially high power density of up to 3.46 W/m~2 is discovered, which largely outperforms some commercial ion-exchange membranes. A theoretical model based on coupled Poisson and Nernst-Planck equations is established to quantitatively explain the experimental observations and get insights into the underlying mechanism. The macroscopic and asymmetric nanofluidic structure anticipates wide potentials for sustainable power generation, water purification, and desalination.
机译:海水和河水之间的盐度差异是一种可持续能源,在能源危机的背景下引起了公众和投资者的关注。为了捕获这种能量,已经在化学,材料科学,环境科学和纳米技术领域进行了跨学科研究,以创建高效且经济可行的能量转换方法和材料。除了传统的基于膜的工艺之外,从纳米级的新型流体传输现象中有望获得从天然水中获取盐度梯度能量的技术突破。实际应用中的主要挑战是将现有的单通道设备外推到宏观材料。在这里,我们报道了一种具有不对称结构,化学成分和表面电荷极性的膜级纳米流体装置,称为离子二极管膜(IDM),用于从盐度梯度中收集电能。 IDM包括介孔碳(孔径约7 nm,带负电)和大孔氧化铝(孔径约80 nm,带正电)之间的异质结。介孔/大孔膜以约高的比例整流离子电流。 450,即使在饱和溶液中也可以在高浓度电解质中继续精馏。选择性和整流的离子传输进一步阐明了盐度梯度发电。通过IDM将人造海水和河水混合,发现高达3.46 W / m〜2的高功率密度,大大超过了某些商业离子交换膜。建立了基于泊松和能斯特-普朗克方程组的理论模型,以定量解释实验观察结果并深入了解其潜在机理。宏观和不对称的纳米流体结构为可持续发电,水净化和脱盐提供了广阔的前景。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2014年第35期|12265-12272|共8页
  • 作者单位

    Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China;

    Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China,Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China;

    Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China;

    Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia;

    Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China;

    Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号