首页> 外文期刊>Journal of the American Chemical Society >Monodisperse Colloidal Gallium Nanoparticles: Synthesis, Low Temperature Crystallization, Surface Plasmon Resonance and Li-Ion Storage
【24h】

Monodisperse Colloidal Gallium Nanoparticles: Synthesis, Low Temperature Crystallization, Surface Plasmon Resonance and Li-Ion Storage

机译:单分散胶体镓纳米颗粒:合成,低温结晶,表面等离子体共振和锂离子存储。

获取原文
获取原文并翻译 | 示例
           

摘要

We report a facile colloidal synthesis of gallium (Ga) nanoparticles with the mean size tunable in the range of 12-46 nm and with excellent size distribution as small as 7- 8%. When stored under ambient conditions, Ga nanoparticles remain stable for months due to the formation of native and passivating Ga-oxide layer (2-3 nm). The mechanism of Ga nanoparticles formation is elucidated using nuclear magnetic resonance spectroscopy and with molecular dynamics simulations. Size-dependent crystallization and melting of Ga nanoparticles in the temperature range of 98-298 K are studied with X-ray powder diffraction, specific heat measurements, transmission electron microscopy, and X-ray absorption spectroscopy. The results point to delta (δ)-Ga polymorph as a single low-temperature phase, while phase transition is characterized by the large hysteresis and by the large undercooling of crystallization and melting points down to 140-145 and 240-250 K, respectively. We have observed size-tunable plasmon resonance in the ultraviolet and visible spectral regions. We also report stable operation of Ga nanoparticles as anode material for Li-ion batteries with storage capacities of 600 mAh g~(-1), 50% higher than those achieved for bulk Ga under identical testing conditions.
机译:我们报道了一种容易的胶体合成镓(Ga)纳米粒子,其平均大小可调节在12-46 nm范围内,并且具有良好的大小分布,可小至7-8%。当在环境条件下存储时,由于天然的和钝化的Ga氧化物层(2-3 nm)的形成,Ga纳米颗粒可以保持稳定数月。 Ga纳米粒子形成的机制已阐明使用核磁共振光谱和分子动力学模拟。利用X射线粉末衍射,比热测量,透射电子显微镜和X射线吸收光谱研究了98-298 K温度范围内Ga纳米颗粒的尺寸依赖性结晶和熔化。结果表明,δ(δ)-Ga多晶型物是一个单一的低温相,而相变的特征是具有较大的磁滞现象和较大的过冷结晶度,熔点分别低至140-145和240-250 K 。我们已经观察到紫外和可见光谱区域的尺寸可调等离子体共振。我们还报道了Ga纳米颗粒作为锂离子电池负极材料的稳定运行,其锂离子电池的存储容量为600 mAh g〜(-1),比在相同测试条件下对块状Ga所实现的储能高出50%。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2014年第35期|12422-12430|共9页
  • 作者单位

    Laboratory for Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zuerich, CH-8093 Zuerich, Switzerland,Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Duebendorf, Switzerland;

    Laboratory for Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zuerich, CH-8093 Zuerich, Switzerland;

    Electron Microscopy Center, Empa - Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Duebendorf, Switzerland;

    Electron Microscopy Center, Empa - Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Duebendorf, Switzerland;

    Laboratory for Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zuerich, CH-8093 Zuerich, Switzerland;

    Laboratory for Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zuerich, CH-8093 Zuerich, Switzerland,Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Duebendorf, Switzerland;

    Laboratory for Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zuerich, CH-8093 Zuerich, Switzerland,Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Duebendorf, Switzerland;

    Laboratory for Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zuerich, CH-8093 Zuerich, Switzerland,Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Duebendorf, Switzerland;

    Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Duebendorf, Switzerland;

    Laboratory for Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zuerich, CH-8093 Zuerich, Switzerland,Institute of Physics, University of Zuerich, CH-8057 Zuerich, Switzerland;

    Institute of Physics, University of Zuerich, CH-8057 Zuerich, Switzerland;

    Paul Scherrer Institute, CH-5232 Villigen, Switzerland;

    Laboratory for Inorganic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zuerich, CH-8093 Zuerich, Switzerland,Laboratory for Thin Films and Photovoltaics, Empa - Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Duebendorf, Switzerland;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号