首页> 外文期刊>Journal of the American Chemical Society >Constructing Solid-Gas-Interfacial Fenton Reaction over Alkalinized-C_3N_4 Photocatalyst To Achieve Apparent Quantum Yield of 49% at 420 nm
【24h】

Constructing Solid-Gas-Interfacial Fenton Reaction over Alkalinized-C_3N_4 Photocatalyst To Achieve Apparent Quantum Yield of 49% at 420 nm

机译:在碱化的C_3N_4光催化剂上构建固-气界面芬顿反应,在420 nm下表观量子产率为49%

获取原文
获取原文并翻译 | 示例
           

摘要

Efficient generation of active oxygen-related radicals plays an essential role in boosting advanced oxidation process. To promote photocatalytic oxidation for gaseous pollutant over g- C_3N_4, a solid-gas interfacial Fenton reaction is coupled into alkalinized g-C_3N_4-based photocatalyst to effectively convert photocatalytic generation of H_2O_2 into oxygen-related radicals. This system includes light energy as power, alkalinized g-C_3N_4- based photocatalyst as an in situ and robust H_2O_2 generator, and surface-decorated Fe~(3+) as a trigger of H_2O_2 conversion, which attains highly efficient and universal activity for photodegradation of volatile organic compounds (VOCs). Taking the photooxidation of isopropanol as model reaction, this system achieves a photoactivity of 2-3 orders of magnitude higher than that of pristine g-C_3N_4, which corresponds to a high apparent quantum yield of 49% at around 420 nm. In-situ electron spin resonance (ESR) spectroscopy and sacrificial-reagent incorporated photocatalytic characterizations indicate that the notable photoactivity promotion could be ascribed to the collaboration between photocarriers (electrons and holes) and Fenton process to produce abundant and reactive oxygen-related radicals. The strategy of coupling solid-gas interfacial Fenton process into semiconductor-based photocatalysis provides a facile and promising solution to the remediation of air poEution via solar energy.
机译:活性氧相关自由基的有效生成在促进高级氧化过程中起着至关重要的作用。为了促进气态污染物在g- C_3N_4上的光催化氧化,将固-气界面Fenton反应耦合到碱化的g-C_3N_4-基光催化剂中,以有效地将H_2O_2的光催化生成转化为氧相关的自由基。该系统包括以光能为动力,以碱化的g-C_3N_4-基光催化剂为原位坚固的H_2O_2生成器,以及以表面修饰的Fe〜(3+)作为H_2O_2转化的诱因,从而实现了高效,通用的光降解挥发性有机化合物(VOC)。以异丙醇的光氧化为模型反应,该系统实现的光活性比原始g-C_3N_4高2-3个数量级,这相当于在420 nm附近具有49%的高表观量子产率。原位电子自旋共振(ESR)光谱和牺牲试剂结合的光催化特性表明,显着的光活性促进可能归因于光载体(电子和空穴)与Fenton过程之间的协同作用,以产生大量与活性氧相关的自由基。将固-气界面芬顿法与基于半导体的光催化相结合的策略为通过太阳能修复空气提供了一种简便而有希望的解决方案。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2016年第40期|13289-13297|共9页
  • 作者单位

    TU-NIMS Joint Research Center, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, PR China,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China;

    TU-NIMS Joint Research Center, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, PR China,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China,Key Lab of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin 300072, PR China;

    TU-NIMS Joint Research Center, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, PR China,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China,Key Lab of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin 300072, PR China;

    TU-NIMS Joint Research Center, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, PR China,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China;

    State Key Laboratory for Oxo Synthesis & Selective Oxidation and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000, PR China;

    TU-NIMS Joint Research Center, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, PR China,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China;

    TU-NIMS Joint Research Center, School of Materials Science and Engineering, Tianjin University, Tianjin 300072, PR China,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, PR China,Key Lab of Advanced Ceramics and Machining Technology, Ministry of Education, Tianjin 300072, PR China,international Center for Materials Nanoarchitectonics (WPI-MANA) and Environmental Remediation Materials Unit, National Institute for Materials Science (NIMS), Tsukuba 305-0047, Japan;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号