首页> 外文期刊>Journal of the American Chemical Society >A Molten Salt Lithium-Oxygen Battery
【24h】

A Molten Salt Lithium-Oxygen Battery

机译:熔融盐锂氧电池

获取原文
获取原文并翻译 | 示例
           

摘要

Despite the promise of extremely high theoretical capacity (2Li + O_2 ↔ Li_2O_2, 1675 mAh per gram of oxygen), many challenges currently impede development of Li/O_2 battery technology. Finding suitable electrode and electrolyte materials remains the most elusive challenge to date. A radical new approach is to replace volatile, unstable and air-intolerant organic electrolytes common to prior research in the field with alkali metal nitrate molten salt electrolytes and operate the battery above the liquidus temperature (>80 ℃). Here we demonstrate an intermediate temperature Li/O_2 battery using a lithium anode, a molten nitrate-based electrolyte (e.g., LiNO_3-KNO_3 eutectic) and a porous carbon O_2 cathode with high energy efficiency (~95%) and improved rate capability because the discharge product, lithium peroxide, is stable and moderately soluble in the molten salt electrolyte. The results, supported by essential state-of-the-art electrochemical and analytical techniques such as in situ pressure and gas analyses, scanning electron microscopy, rotating disk electrode voltammetry, demonstrate that Li_2O_2 electro- chemically forms and decomposes upon cycling with discharge/charge overpotentials as low as 50 mV. We show that the cycle life of such batteries is limited only by carbon reactivity and by the uncontrolled precipitation of Li_2O_2, which eventually becomes electrically disconnected from the O_2 electrode.
机译:尽管有望实现极高的理论容量(2Li + O_2↔Li_2O_2,每克氧气1675 mAh),但目前仍有许多挑战阻碍了Li / O_2电池技术的发展。迄今为止,寻找合适的电极和电解质材料仍然是最艰巨的挑战。一种根本的新方法是用碱金属硝酸盐熔融盐电解质代替在该领域中先前研究中常见的易挥发,不稳定和不耐空气的有机电解质,并在液相线温度(> 80℃)以上操作电池。在这里,我们演示了使用锂阳极,熔融硝酸盐基电解质(例如,LiNO_3-KNO_3低共熔物)和多孔碳O_2阴极的中温Li / O_2电池,具有高能效(〜95%)和提高的倍率能力,因为放电产物过氧化锂稳定且适度溶于熔融盐电解质中。结果得到基本的最新电化学和分析技术(例如原位压力和气体分析,扫描电子显微镜,旋转圆盘电极伏安法)的支持,表明Li_2O_2在放电/充电循环时电化学形成并分解低至50 mV的过电位。我们表明,此类电池的循环寿命仅受碳反应性和不受控制的Li_2O_2沉淀的限制,而Li_2O_2最终会与O_2电极断开电连接。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2016年第8期|2656-2663|共8页
  • 作者单位

    Liox Power, Inc., 129 N. Hill Ave., Pasadena, California 91106, United States;

    Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States;

    Liox Power, Inc., 129 N. Hill Ave., Pasadena, California 91106, United States;

    Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States, Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;

    Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States;

    Liox Power, Inc., 129 N. Hill Ave., Pasadena, California 91106, United States;

    Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125, United States;

    Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States, Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States;

    Liox Power, Inc., 129 N. Hill Ave., Pasadena, California 91106, United States;

    Liox Power, Inc., 129 N. Hill Ave., Pasadena, California 91106, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号