首页> 外文期刊>Journal of the American Chemical Society >Origins of the Mechanochemical Coupling of Peptide Bond Formation to Protein Synthesis
【24h】

Origins of the Mechanochemical Coupling of Peptide Bond Formation to Protein Synthesis

机译:肽键形成与蛋白质合成的机械化学偶联的起源

获取原文
获取原文并翻译 | 示例
           

摘要

Mechanical forces acting on the ribosome can alter the speed of protein synthesis, indicating that mechanochemistry can contribute to translation control of gene expression. The naturally occurring sources of these mechanical forces, the mechanism by which they are transmitted 10 nm to the ribosome’s catalytic core, and how they influence peptide bond formation rates are largely unknown. Here, we identify a new source of mechanical force acting on the ribosome by using in situ experimental measurements of changes in nascent-chain extension in the exit tunnel in conjunction with all-atom and coarse-grained computer simulations. We demonstrate that when the number of residues composing a nascent chain increases, its unstructured segments outside the ribosome exit tunnel generate piconewtons of force that are fully transmitted to the ribosome’s P-site. The route of force transmission is shown to be through the nascent polypetide’s backbone, not through the wall of the ribosome’s exit tunnel. Utilizing quantum mechanical calculations we find that a consequence of such a pulling force is to decrease the transition state free energy barrier to peptide bond formation, indicating that the elongation of a nascent chain can accelerate translation. Since nascent protein segments can start out as largely unfolded structural ensembles, these results suggest a pulling force is present during protein synthesis that can modulate translation speed. The mechanism of force transmission we have identified and its consequences for peptide bond formation should be relevant regardless of the source of the pulling force.
机译:作用于核糖体的机械力可以改变蛋白质合成的速度,这表明机械化学作用可以促进基因表达的翻译控制。这些机械力的天然来源,将其传递至核糖体催化核心10 nm的机理以及它们如何影响肽键形成速率的机制尚不清楚。在这里,我们通过使用原位实验测量出口隧道中新生链延伸的变化并结合全原子和粗粒度计算机模拟,确定了作用于核糖体的机械力的新来源。我们证明,当组成新生链的残基数量增加时,其在核糖体出口通道外的非结构化片段会产生皮尼顿力,这些力会完全传递给核糖体的P位。力传递的路径显示为通过新生多肽的骨架,而不是通过核糖体出口通道的壁。利用量子力学计算,我们发现这种拉力的结果是减少了对肽键形成的过渡态自由能垒,表明新生链的延长可以加速翻译。由于新生的蛋白质片段可以从大部分未折叠的结构开始,因此这些结果表明蛋白质合成过程中存在拉力,可以调节翻译速度。我们已经确定了力传递的机制及其对肽键形成的影响,无论拉力的来源如何,都应该是相关的。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2018年第15期|5077-5087|共11页
  • 作者单位

    Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States;

    Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States;

    Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States,Laboratory of Computational Biology, National Institutes of Health, Bethesda, Maryland 20892, United States;

    Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States;

    Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States;

    Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States;

    Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, United States,Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号