首页> 外文期刊>Journal of the American Chemical Society >Slow Dynamics of Tryptophan-Water Networks in Proteins
【24h】

Slow Dynamics of Tryptophan-Water Networks in Proteins

机译:蛋白质中色氨酸-水网络的慢动力学

获取原文
获取原文并翻译 | 示例
           

摘要

Water has a profound effect on the dynamics of biomolecules and governs many biological processes, leading to the concept that function is slaved to solvent dynamics within and surrounding the biomolecule. Protein conformational changes on μs–ms time scales are frequently associated with protein function, but little is known about the behavior of protein-bound water on these time scales. Here we have used NMR relaxation dispersion measurements to probe the tryptophan indoles in the enzyme dihydrofolate reductase (DHFR). We find that during structural changes on the μs–ms time scale, large chemical shift changes are often observed for the NH proton on the indole ring, while relatively smaller chemical shift changes are observed for the ring nitrogen atom. Comparison with experimental chemical shifts and density functional theory-based chemical shift predictions show that during the structural change the tryptophan indole NHs remain bound to water, but the geometry of the protein-bound water networks changes. These results establish that relaxation dispersion measurements can indirectly probe water dynamics and indicate that water can influence, or be influenced by, protein conformational changes on the μs–ms time scale. Our data show that structurally conserved bound water molecules can play a critical role in transmitting information between functionally important regions of the protein and provide evidence that internal protein motions can be coupled through the mediation of hydrogen-bonded water bound in the protein structure.
机译:水对生物分子的动力学具有深远的影响,并控制着许多生物过程,导致了这样一个概念,即功能取决于生物分子内部和周围的溶剂动力学。在μs–ms时标上的蛋白质构象变化通常与蛋白质功能有关,但对于在这些时标上结合蛋白质的水的行为知之甚少。在这里,我们已使用NMR弛豫色散测量来探测二氢叶酸还原酶(DHFR)中的色氨酸吲哚。我们发现,在μs–ms时间尺度上的结构变化期间,通常观察到吲哚环上NH质子的化学位移变化较大,而环氮原子的化学位移变化相对较小。与实验化学位移和基于密度泛函理论的化学位移预测的比较表明,在结构变化期间,色氨酸吲哚NHs仍然与水结合,但是与蛋白质结合的水网络的几何形状却发生了变化。这些结果表明,弛豫分散度测量可以间接探测水动力学,并表明水可以影响或受到μs–ms时间尺度上蛋白质构象变化的影响。我们的数据表明,结构保守的结合水分子可以在蛋白质的功能重要区域之间传递信息中发挥关键作用,并提供证据表明内部蛋白质运动可以通过结合在蛋白质结构中的氢键水介导。

著录项

  • 来源
    《Journal of the American Chemical Society》 |2018年第2期|675-682|共8页
  • 作者单位

    The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States;

    The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States;

    The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States;

    The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);美国《化学文摘》(CA);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号