...
首页> 外文期刊>Journal of Scientific & Industrial Research >Emerging trends in ultra-miniaturized CMOS (Complementary metal-oxide- semiconductor) transistors, single-electron and molecular-scale devices: A comparative analysis for high-performance computational nanoelectronics
【24h】

Emerging trends in ultra-miniaturized CMOS (Complementary metal-oxide- semiconductor) transistors, single-electron and molecular-scale devices: A comparative analysis for high-performance computational nanoelectronics

机译:超小型化CMOS(互补金属氧化物半导体)晶体管,单电子和分子尺度器件的新兴趋势:高性能计算纳米电子学的比较分析

获取原文
获取原文并翻译 | 示例
           

摘要

The current status and trends of the three ultra-small scale integrated circuit technologies, namely nanoscale CMOS, single- and molecular electronics are comprehensively reviewed. A comparative study is made, pointing out their relative pros and cons for nanoelectronic computing. Crucial aspects of MOS downscaling include, from the physical viewpoint, the infamous short-channel effect caused by drain induced barrier lowering (DIBL), the narrow width effect associated with small channel width, the combined small-geometry effect, and hot-carrier degradation; together with the conflicting requirements of shallow silicided junctions and low junction leakage; random doping fluctuations; ultrathin gate oxide reliability; polysilicon depletion effect; atomic scale roughness at the Si/SiO_2 interface; and high lithographic expenses, on the technological side. For sustaining growth in device density, a possible route for the microelectronics industry is to shift from the traditional field-effect transistor-based paradigm to one based on nanostructures. Single electronics has not been able to bear the envisaged fruits. While prospects of solo single-electron logic are murky, the concept of a mixed single-electron device/FET multi-valued logic and memory appears to be beneficial. But to achieve the ultimate performance, it may be expedient to transform our philosophy fundamentally to start from the molecular level, instead of scaling down old technologies to nanometer level. Molecular electronics appears to be the appropriate approach because the development cost of scaled technologies, and cost-effectiveness of resulting devices is not encouraging. The review seeks to provoke keen interest in these futuristic nanotechnologies.
机译:全面回顾了纳米级CMOS,单分子和分子电子学这三种超小型集成电路技术的现状和趋势。进行了比较研究,指出了它们在纳米电子计算方面的相对优缺点。从物理角度来看,MOS降尺度的关键方面包括:由漏极引起的势垒降低(DIBL)引起的臭名昭著的短沟道效应,与小沟道宽度相关的窄宽度效应,综合的小几何效应和热载流子退化;以及浅硅化物结和低结漏的矛盾要求;随机掺杂波动;超薄栅氧化层可靠性多晶硅耗尽效应; Si / SiO_2界面处的原子尺度粗糙度;和高光刻费用,在技术方面。为了维持器件密度的增长,微电子行业的一条可行途径是从传统的基于场效应晶体管的范例转变为基于纳米结构的范例。单个电子产品无法实现预期的成果。尽管单电子逻辑的前景不明朗,但混合单电子器件/ FET多值逻辑和存储器的概念似乎是有益的。但是,要获得最终性能,可能需要从根本上将我们的理念从分子水平转变为改变分子结构,而不是将旧技术缩减为纳米水平。分子电子学似乎是合适的方法,因为规模化技术的开发成本以及由此产生的设备的成本效益并不令人鼓舞。这篇综述旨在引起人们对这些未来纳米技术的浓厚兴趣。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号