...
首页> 外文期刊>Journal of Pressure Vessel Technology >Thermoelastic Stresses in Thick-Walled Vessels Under Thermal Transients via the Inverse Route
【24h】

Thermoelastic Stresses in Thick-Walled Vessels Under Thermal Transients via the Inverse Route

机译:逆向路径在热瞬态作用下的厚壁容器中的热弹性应力

获取原文
获取原文并翻译 | 示例
           

摘要

A common threat to thick-walled vessels and pipes is thermal shock from operational steady state or transient thermoelastic stresses. As such, boundary conditions must be known or determined in order to reveal the underlying thermal state. For direct problems where all boundary conditions (temperature or flux) are known, the procedure is relatively straightforward and mathematically tractable as shown by many studies. Although more practical from a measurement standpoint, the inverse problem where the boundary conditions must be determined from remotely determined temperature and/or flux data is ill-posed and inherently sensitive to errors in the data. As a result, the inverse route is rarely used to determine thermal stresses. Moreover, most analytical solutions to the inverse problem rely on a host of assumptions that usually restrict their utility to time frames before the thermal wave reaches the natural boundaries of the structure. To help offset these limitations and at the same time solve for the useful case of a thick-walled cylinder exposed to thermal loading on the internal surface, the inverse problem was solved using a least-squares determination of polynomial coefficients based on a generalized direct solution to the heat equation. Once the inverse problem was solved in this fashion and the unknown boundary condition on the internal surface determined, the resulting polynomial was used with the generalized direct solution to determine the internal temperature and stress distributions as a function of time and radial position. For a thick-walled cylinder under an internal transient with external convection, excellent agreement was seen with known temperature histories. Given the versatility of the polynomial solutions advocated, the method appears well suited for many thermal scenarios provided the analysis is restricted to the time interval used to determine the polynomial and the thermophysical properties that do not vary with temperature.
机译:对厚壁容器和管道的常见威胁是操作稳态或瞬态热弹性应力引起的热冲击。因此,必须知道或确定边界条件,以揭示潜在的热状态。对于已知所有边界条件(温度或通量)的直接问题,此过程相对简单且在数学上易于处理,如许多研究所示。尽管从测量的角度来看更实用,但是必须根据远程确定的温度和/或通量数据确定边界条件的反问题是不恰当的,并且固有地对数据中的错误敏感。结果,反向路径很少用于确定热应力。此外,大多数反问题的解析解决方案都依赖于一系列假设,这些假设通常将其效用限制在热波到达结构的自然边界之前的时间范围内。为了弥补这些限制,同时解决了内壁承受热负荷的厚壁圆筒的有用情况,使用了基于广义直接解的多项式系数的最小二乘确定来解决反问题热方程。一旦以这种方式解决了反问题并确定了内表面上的未知边界条件,则将所得的多项式与广义直接解一起使用,以确定随时间和径向位置而变的内部温度和应力分布。对于具有外部对流的内部瞬变的厚壁圆筒,在已知的温度历史下可以看到极好的一致性。考虑到所提倡的多项式解决方案的多功能性,该方法似乎非常适合许多热场景,前提是分析仅限于确定多项式的时间间隔和不随温度变化的热物理性质。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号