首页> 外文期刊>Journal of power sources >Design considerations for effective control of an afterburner sub-system in a combined heat and power (CHP) fuel cell system (FCS)
【24h】

Design considerations for effective control of an afterburner sub-system in a combined heat and power (CHP) fuel cell system (FCS)

机译:在热电联产(CHS)燃料电池系统(FCS)中有效控制加力子系统的设计注意事项

获取原文
获取原文并翻译 | 示例
           

摘要

This article investigates various control strategies for a combined heat and power (CHP) fuel cell system (FCS), with a specific focus on the afterburner sub-system. The afterburner sub-system recovers heat and by-products from the excess fuel and oxidant not consumed within the fuel cell. The overall performance of a CHP FCS depends crucially on the control of the afterburner sub-system because the control of this sub-system (1) determines the extent of thermal energy recovered from the system, between 35 and 55% of fuel energy input; (2) establishes the rate limiting step in the control of the overall CHP FCS because the rate at which the afterburner can combust excess fuel and oxidant safely and raise steam affects the rate at which the fuel cell's electrical power output can change; and (3) impacts upstream mass and energy flows strongly, such as the system's overall water balance and also the raising of steam for the upstream fuel processor and cathode humidification, as this is the point in the system where the CHP FCS becomes closed loop for heat and mass flows. Using an Aspen Plus~(~R) chemical engineering model of the CHP FCS, this article (1) identifies potential challenges in operating the afterburner sub-system, (2) discusses various options for ameliorating those challenges, and (3) recommends viable solutions. The two challenges it discusses in detail are (1) the danger of overheating the afterburner, and (2) the danger of overheating a downstream steam generator. Regarding the first challenge, in the low anode hydrogen utilization (AHU) range (66-85%) specified by some fuel cell manufacturers, the afterburner is in danger of overheating beyond its maximum rated operating point. Regarding the second challenge, also at low anode hydrogen utilizations, the steam generator is in danger of overheating beyond its maximum rated operating point. This article demonstrates that one solution for overcoming these challenges is to dilute the afterburner's stream with exhaust gas from the cathode. This article shows the ratio of cathode exhaust flow rates that achieve the desired operating temperature regions for the afterburner and downstream sub-system components. Using this method, this article determines an optimal control strategy solution for the afterburner sub-system.
机译:本文研究了热电联产(CHP)燃料电池系统(FCS)的各种控制策略,特别关注了加力燃烧室子系统。加力燃烧器子系统从燃料电池内未消耗的过量燃料和氧化剂中回收热量和副产品。 CHP FCS的整体性能在很大程度上取决于加力燃烧器子系统的控制,因为该子系统的控制(1)决定从系统回收的热能的程度,介于燃料能量输入的35%到55%之间; (2)由于加力燃烧器可以安全地燃烧过量的燃料和氧化剂并提高蒸汽的速度会影响燃料电池的电力输出变化的速度,因此在控制整个CHP FCS的过程中建立了限速步骤; (3)强烈影响上游质量和能量流,例如系统的整体水平衡以及上游燃料处理器的蒸汽量增加和阴极加湿,因为这是系统中CHP FCS成为闭环回路的关键时刻。热量和质量流量。本文使用CHP FCS的Aspen Plus〜(〜R)化学工程模型,本文(1)确定了操作加力燃烧子系统的潜在挑战,(2)讨论了缓解这些挑战的各种选择,(3)提出了可行的建议解决方案。它详细讨论的两个挑战是(1)加力燃烧器过热的危险,以及(2)下游蒸汽发生器过热的危险。关于第一个挑战,在某些燃料电池制造商指定的低阳极氢利用率(AHU)范围(66-85%)中,加力燃烧器存在过热超过其最大额定工作点的危险。关于第二个挑战,同样在阳极氢气利用率低的情况下,蒸汽发生器有过热的危险,超过其最大额定工作点。本文证明了克服这些挑战的一种解决方案是用来自阴极的废气稀释加力燃烧器的气流。本文显示了达到加力燃烧器和下游子系统组件所需的工作温度区域的阴极排气流量比。使用这种方法,本文确定了加力燃烧器子系统的最佳控制策略解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号