首页> 外文期刊>Journal of power sources >Interactions between lignosulphonates and the components of the lead-acid battery Part 1. Adsorption isotherms
【24h】

Interactions between lignosulphonates and the components of the lead-acid battery Part 1. Adsorption isotherms

机译:木质素磺酸盐与铅酸电池组件之间的相互作用第1部分。吸附等温线

获取原文
获取原文并翻译 | 示例
           

摘要

The expander performs at least five different tasks in the battery. It is a fluidiser for the negative paste. It controls the formation stage of the battery. It controls the shape and size of the lead sulphate crystals formed upon discharge, and thus prevents the sintering of the active mass. It controls the rate of the lead to lead sulphate oxidation during discharge. Finally, it affects the charge acceptance. To gain more understanding of these different effects the interaction between lead, lead(Ⅱ) oxide, lead(Ⅳ) oxide, lead sulphate, barium sulphate and carbon black and the experimental lignosulphonate (LS) expander UP-414 has been investigated. We also compared with Vanisperse A and several other lignosulphonates, to elucidate the mechanisms operating. In most cases, we have studied concentration ranges that are both higher and lower than those normally encountered in batteries. There is no adsorption of lignosulphonates to pure lead surfaces. Adsorption to lead sulphate is a slow process. In the presence of lead ions lignosulphonates will also adsorb to lead. The adsorption to lead(Ⅱ) oxide is a fast process, and a strong adsorption occurs. In all these cases, it is preferably the high molecular weight fraction that interacts with the solid surfaces. Lead ions leaching from the surface complexes with lignosulphonates to give a more hydrophobic species. This allows the normally negatively charged lignosulphonate to adsorb to the negatively charged substrates. The lignosulphonates have an ability to complex lead ions and keep them solvated. This confirms previous observations of the lignosulphonates ability to promote the dissolution-precipitation mechanism for lead sulphate formation on the expense of the solid-state reaction.
机译:扩展器在电池中至少执行五个不同的任务。它是负性糊剂的流化剂。它控制电池的形成阶段。它控制放电时形成的硫酸铅晶体的形状和大小,从而防止活性物质的烧结。它控制放电过程中铅到硫酸铅氧化的速率。最后,它会影响充电接受度。为了进一步了解这些不同的影响,研究了铅,氧化铅(Ⅱ),氧化铅(Ⅳ),硫酸铅,硫酸钡和炭黑之间的相互作用,并研究了木质素磺酸盐(LS)膨胀剂UP-414。我们还与Vanisperse A和其他几种木质素磺酸盐进行了比较,以阐明其作用机理。在大多数情况下,我们研究的浓度范围都比电池中通常遇到的浓度范围高和低。木质素磺酸盐没有吸附到纯铅表面上。硫酸铅的吸附是一个缓慢的过程。在存在铅离子的情况下,木质素磺酸盐也将吸附到铅上。对氧化铅(Ⅱ)的吸附是一个快速过程,并且发生强吸附。在所有这些情况下,优选高分子量部分与固体表面相互作用。从表面浸出的铅离子与木质素磺酸盐形成疏水性更强的物质。这使带正电的木质素磺酸盐吸附到带负电的基材上。木质素磺酸盐具有复合铅离子并使它们保持溶剂化的能力。这证实了先前观察到的木质素磺酸盐以固态反应为代价促进硫酸铅形成的溶解-沉淀机理的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号