...
首页> 外文期刊>Journal of power sources >On the performance of membraneless laminar flow-based fuel cells
【24h】

On the performance of membraneless laminar flow-based fuel cells

机译:关于无膜层流式燃料电池的性能

获取原文
获取原文并翻译 | 示例
           

摘要

This paper reports on the characterization and optimization of laminar flow-based fuel cells (LFFCs) for both performance and fuel utilization. The impact of different operating conditions (volumetric flow rate, fuel-to-electrolyte flow rate ratio, and oxygen concentration) and of different cell dimensions (electrode-to-electrode distances, and channel length) on the performance (both power density and fuel utilization) of individual LFFCs is investigated. A finite-element-method simulation, which accounts for all relevant transport processes and electrode reactions, was developed to explain the experimental results here. This model can be used to guide further LFFC optimizations with respect to cell design and operation conditions. Using formic acid as the fuel, we measured a peak power density of 55 mW cm~(-2). By hydro-dynamically focusing the fuel to a thin stream on the anode we were able to reduce the fraction of fuel that passes through the channel without reacting, thereby increasing the fuel utilization per pass to a maximum of 38%. This paper concludes with a discussion on the various trade-offs between maximizing power density and optimizing fuel utilization per pass for individual LFFCs, in light of scaling out to a multichannel LFFC-based power source system.
机译:本文报告了基于层流的燃料电池(LFFC)的性能和燃料利用率的表征和优化。不同的操作条件(体积流量,燃料与电解质的流量比和氧气浓度)和不同的电池尺寸(电极与电极的距离以及通道长度)对性能(功率密度和燃料)的影响LFFCs的利用率)。为了解释实验结果,开发了一种有限元方法模拟,该方法考虑了所有相关的传输过程和电极反应。该模型可用于指导有关电池设计和运行条件的进一步LFFC优化。使用甲酸作为燃料,我们测得的峰值功率密度为55 mW cm〜(-2)。通过将流体流体动力学地集中到阳极上的稀薄流中,我们能够减少通过通道而没有反应的燃料比例,从而将每次通过的燃料利用率提高到最大38%。本文以扩展到基于多通道LFFC的电源系统为出发点,对单个LFFC的最大功率密度与每次通过燃料利用率之间的各种权衡取舍进行了讨论。

著录项

  • 来源
    《Journal of power sources》 |2010年第11期|3569-3578|共10页
  • 作者单位

    Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, United States P.O. Box 4098, Chemistry Department, Georgia State University, Atlanta GA 30302, United States;

    Department of Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, 1206 W. Green St., Urbana, IL 61801, United States;

    Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, United States;

    Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, United States;

    INI Power Systems, 175 Southport Drive - Suite 100, Morrisville, NC 27560, United States;

    INI Power Systems, 175 Southport Drive - Suite 100, Morrisville, NC 27560, United States;

    Department of Chemical & Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Ave., Urbana, IL 61801, United States Department of Mechanical Science & Engineering, University of Illinois at Urbana-Champaign, 1206 W. Green St., Urbana, IL 61801, United States;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    laminar flow; membraneless; fuel cell; fuel utilization; hydrodynamic focusing; fuel crossover;

    机译:层流无膜燃料电池;燃油利用率;流体动力聚焦燃油交叉;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号