...
首页> 外文期刊>Journal of power sources >Application of explicit model predictive control to a hybrid battery-ultracapacitor power source
【24h】

Application of explicit model predictive control to a hybrid battery-ultracapacitor power source

机译:显式模型预测控制在混合电池-超级电容器电源中的应用

获取原文
获取原文并翻译 | 示例
           

摘要

An explicit model predictive control (EMPC) system for a hybrid battery-ultracapacitor power source is proposed and experimentally verified in this paper. The main advantage of using the EMPC system is that the control law computation is reduced to evaluation of an explicitly defined piecewise linear function of the states. Separate EMPC systems for the total output current loop, the battery loop and the ultra-capacitor loop are designed. This modular design approach allows evaluation of the performance of each individual EMPC system separately and also improves the convergence of the EMPC system design algorithm as the models used to design each loop are smaller. In order to protect the hybrid power source, the designed EMPC systems maintain operation of the hybrid power source within specified constraints, namely, battery and ultracapacitor current constraints, battery state of charge constraints and ultra-capacitor voltage constraints. At the same time, the total output current EMPC system allocates high frequency current changes to the ultracapacitor and the low frequency current changes to the battery thus extending the battery lifetime. Presented experimental results verify that the hybrid power source operates within the specified constraints while allocating high and low frequency current changes to the ultracapacitor and battery respectively.
机译:本文提出了一种用于混合动力电池-超级电容器电源的显式模型预测控制(EMPC)系统,并进行了实验验证。使用EMPC系统的主要优点是,控制律的计算被简化为评估状态的明确定义的分段线性函数。针对总输出电流回路,电池回路和超级电容器回路设计了单独的EMPC系统。这种模块化设计方法不仅可以分别评估每个EMPC系统的性能,而且还可以改善EMPC系统设计算法的收敛性,因为用于设计每个回路的模型较小。为了保护混合电源,设计的EMPC系统将混合电源的运行保持在指定的约束内,即电池和超级电容器电流约束,电池充电状态约束和超级电容器电压约束。同时,总输出电流EMPC系统将高频电流变化分配给超级电容器,而低频电流变化分配给电池,从而延长了电池寿命。提出的实验结果验证了混合电源在指定的约束下运行,同时分别将高频和低频电流变化分配给了超级电容器和电池。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号