...
首页> 外文期刊>Journal of power sources >The effects of nanostructures on lithium storage behavior in Mn_2O_3 anodes for next-generation lithium-ion batteries
【24h】

The effects of nanostructures on lithium storage behavior in Mn_2O_3 anodes for next-generation lithium-ion batteries

机译:纳米结构对下一代锂离子电池Mn_2O_3阳极锂储存行为的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Nanostructured materials for lithium-ion batteries (LIBs) have many advantages over bulk electrode materials, and therefore, such materials should be effectively utilized in next-generation batteries. Herein, we identify that the superior performances of mesoporous Mn2O3 results from the different lithium storage behaviors of mesoporous and bulk Mn2O3. X-ray absorption spectroscopy (XAS) and bond strength calculation show that mesoporous Mn2O3 has a larger capacity than bulk Mn2O3 owing to an additional oxidation of Mn2+ to a higher oxidation state during charging, as well as an additional reversible reaction during cycling because the weaker Mn-O bond strength of mesoporous Mn2O3 requires much less strength to break or form atomic bonds during the electrochemical reactions. Furthermore, the combined results of X-ray photoelectron spectroscopy and soft XAS indicate that an additional lithium storage reaction through the reversible formation-decomposition of the electrolyte-derived surface layer occurs more in mesopomus Mn2O3 than in bulk Mn2O3. Consequently, the improvement in the lithium storage behavior of mesoporous Mn2O3 due to the increasing specific surface area and decreasing particle size with the progression of cycles, also affects their cycle performances. This study provides a better understanding of the synergistic relationship between nanostructures and the electrochemical performances of anode materials for LIBs.
机译:用于锂离子电池(LIBS)的纳米结构材料具有与散装电极材料相比的许多优点,因此,应在下一代电池中有效地利用这些材料。在此,我们确定介孔MN2O3的优异性能是由介孔和散装Mn2O3的不同锂储存行为产生的。 X射线吸收光谱(XAS)和粘合强度计算显示,由于在充电期间Mn2 +的额外氧化在较高的氧化状态下,介孔Mn2O3具有比块状Mn2O3更大的容量,以及循环期间的额外可逆反应,因为较弱中孔Mn2O3的Mn-O键合强度需要更少的强度在电化学反应期间破裂或形成原子键。此外,X射线光电子能谱和软XA的组合结果表明通过可逆地层分解的电解质衍生表面层的另外的锂储存反应比在Mesopomus Mn2O3中发生,而不是在体积Mn2O 2中。因此,由于循环进展增加了介孔Mn2O3引起的介孔Mn2O3的锂储存行为的改善,并且随着循环进展而降低粒度,也影响了它们的循环性能。该研究提供了更好地理解纳米结构与Libs阳极材料的电化学性能之间的协同关系。

著录项

  • 来源
    《Journal of power sources》 |2021年第1期|229682.1-229682.11|共11页
  • 作者单位

    Sungkyunkwan Univ Dept Energy Sci Nat Sci Campus Suwon 16419 South Korea|Sungkyunkwan Univ Inst New Paradigm Energy Sci Convergence Suwon 16419 South Korea;

    Sungkyunkwan Univ Dept Energy Sci Nat Sci Campus Suwon 16419 South Korea;

    Sungkyunkwan Univ Dept Energy Sci Nat Sci Campus Suwon 16419 South Korea;

    Sungkyunkwan Univ Dept Chem Suwon 16419 South Korea;

    Sungkyunkwan Univ Dept Chem Suwon 16419 South Korea;

    Sungkyunkwan Univ Dept Energy Sci Nat Sci Campus Suwon 16419 South Korea;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Mn2O3 anode; Mesoporous structure; Reaction mechanism; Electrolyte-derived surface layer; Lithium-ion batteries;

    机译:Mn2O3阳极;中孔结构;反应机理;电解质衍生的表面层;锂离子电池;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号