...
首页> 外文期刊>Journal of Petrology >Mantle Melting, Melt Transport, and Delivery Beneath a Slow-Spreading Ridge: The Paleo-MAR from 23°15′N to 23°45′N
【24h】

Mantle Melting, Melt Transport, and Delivery Beneath a Slow-Spreading Ridge: The Paleo-MAR from 23°15′N to 23°45′N

机译:地幔在缓慢蔓延的山脊下融化,融化运输和输送:从北纬23°15′到北纬23°45′的古近海

获取原文
获取原文并翻译 | 示例
           

摘要

Kane Megamullion, an oceanic core complex near the Mid-Atlantic Ridge (MAR) abutting the Kane Transform, exposes nearly the full plutonic foundation of the MARK paleo-ridge segment. This provides the first opportunity for a detailed look at the patterns of mantle melting, melt transport and delivery at a slow-spreading ridge. The Kane lower crust and mantle section is heterogeneous, as a result of focused mantle melt flow to different points beneath the ridge segment in time and space, over an ∼300–400 kyr time scale. The association of residual mantle peridotite, dunite and troctolite with a large ∼1 km+ thick gabbro section at the Adam Dome Magmatic Center in the southern third of the complex probably represents the crust–mantle transition. This provides direct evidence for local melt accumulation in the shallow mantle near the base of the crust as a result of dilation accompanying corner flow beneath the ridge. Dunite and troctolite with high-Mg Cpx represent melt–rock reaction with the mantle, and suggest that this should be taken into account in modeling the evolution of mid-ocean ridge basalt (MORB). Despite early precipitation of high-Mg Cpx, wehrlites similar to those in many ophiolites were not found. Peridotite modes from the main core complex and transform wall define a depletion trend coincident with that for the SW Indian Ridge projecting toward East Pacific Rise mantle exposed at Hess Deep. The average Kane transform peridotite is a lherzolite with 5·2% Cpx, whereas that from the main core complex is a harzburgite with only 3·5% Cpx. As the area corresponds to a regional bathymetric low, and the crust is apparently thin, it is likely that most residual mantle along the MAR is significantly more depleted. Thus, harzburgitic and lherzolitic ophiolite subtypes cannot be simply interpreted as slow- and fast-spreading ridges respectively. The mantle peridotites are consistent with a transform edge effect caused by juxtaposition of old cold lithosphere against upwelling mantle at the ridge–transform intersection. This effect is far more local, confined to within 10 km of the transform slip zone, and far smaller than previously thought, corresponding to ∼8% as opposed to 12·5% melting of a pyrolitic mantle away from the transform. Excluding the transform, the overall degree of melting over 3 Myr indicated by the peridotites is uniform, ranging from ∼11·3 to 13·8%. Large variations in composition for a single dredge or ROV dive, however, reflect local melt transport through the shallow mantle. This produced variable extents of melt–rock reaction, dunite formation, and melt impregnation. At least three styles of late mantle metasomatism are present. Small amounts of plagioclase with elevated sodium and titanium and alumina-depletion in pyroxene relative to residual spinel peridotites represent impregnation by a MORB-like melt. Highly variable alumina depletion in pyroxene rims in spinel peridotite probably represents cryptic metasomatism by small volumes of late transient silica-rich melts meandering through the shallow mantle. Direct evidence for such melts is seen in orthopyroxenite veins. Finally, a late hydrous fluid may be required to explain anomalous pyroxene sodium enrichment in spinel peridotites. The discontinuous thin lower crust exposed at Kane Megamullion contrasts with the >700 km2 1·5 km+ thick Atlantis Bank gabbro massif at the SW Indian Ridge (SWIR), clearly showing more robust magmatism at the latter. However, the SWIR spreading rate is 54% of the MAR rate, the offset of the Atlantis II Fracture Zone is 46% greater and Na8 of the spatially associated basalts 16% greater—all of which predict precisely the opposite. At the same time, the average compositions of Kane and Atlantis II transform peridotites are nearly identical. This is best explained by a more fertile parent mantle beneath the SWIR and demonstrates that crustal thickness predicted by simply inverting MORB compositions can be significantly in error.
机译:Kane Megamullion是靠近大西洋中脊(MAR)且与Kane变换邻接的大洋核心综合体,几乎暴露了MARK古脊段的整个深成岩基础。这为详细了解地幔融化,融化物在缓慢扩散的脊上的运输和输送的方式提供了第一个机会。凯恩下地壳和地幔段是不均匀的,这是由于在约300-400年的时间范围内,地幔熔体在时间和空间上集中到脊段下方的不同点的结果。复杂南三分之一的亚当穹顶岩浆中心的残余地幔橄榄岩,榴辉岩和闪石与厚约1 km +的辉长岩相结合,可能代表了地幔-地幔的过渡。这提供了直接的证据,表明由于伴随着山脊下方的拐角流动而发生的膨胀,地壳底部附近的浅地幔中的局部熔体蓄积。镁含量高的Cpx的褐铁矿和滑石代表与地幔的熔岩反应,并建议在模拟中洋脊玄武岩(MORB)的演化时应考虑到这一点。尽管高镁Cpx的早期沉淀,但未发现类似于许多蛇绿岩的辉绿岩。来自主要岩心复合体和转换壁的橄榄岩模式定义了与西南印第安脊向向暴露于赫斯深部的东太平洋上升地幔的投影相一致的损耗趋势。凯恩相变橄榄岩的平均含量为Cpx含量为5·2%的锂铁矿,而主要岩心复合物中的钙钛矿的Cpx含量仅为3·5%。由于该区域对应于一个区域的测深低点,并且地壳显然很薄,因此,沿MAR的大部分残留地幔可能会明显耗竭更多。因此,不能简单地将哈兹堡型和莱索沸石的蛇绿岩亚型分别解释为缓慢扩散和快速扩散的山脊。地幔橄榄岩与老冷岩石圈并置对脊-转换相交处上升的地幔引起的转换边缘效应一致。这种影响远不止于此,仅限于转换滑移带的10 km以内,并且远小于先前的想象,相当于〜8%,而不是远离转换的热解地幔融化12·5%。除转变之外,橄榄岩所指示的3 Myr的总熔化度是均匀的,范围从〜11·3到13·8%。但是,一次挖泥船或ROV潜水的成分差异很大,反映了通过浅层地幔的局部熔体传输。这产生了不同程度的熔岩反应,榴辉岩形成和熔体浸渍。至少存在三种晚地幔交代作用。相对于残留的尖晶石橄榄石,少量的斜长石具有较高的钠和钛含量,辉石中的氧化铝损耗代表了MORB状熔体的浸渍。尖晶石橄榄石中辉石边缘的氧化铝变化程度极高,这可能代表着隐伏的交代作用,这是由于少量的晚期瞬态富硅熔体蜿蜒穿过浅地幔而引起的。在正辉石矿脉中可以看到这种熔体的直接证据。最后,可能需要后期的含水流体来解释尖晶石橄榄岩中辉石钠的异常富集。凯恩巨型竖exposed处不连续的薄下地壳与西南印第安岭(SWIR)> 700 km 2 1·5 km +厚的亚特兰蒂斯河辉长岩形成鲜明对比,清楚地显示了后者的岩浆作用更为强劲。但是,SWIR扩散率是MAR率的54%,Atlantis II裂隙带的偏移量大46%,空间相关玄武岩的Na 8 大16%,所有这些都可以准确预测相反。同时,凯恩(Kane)和亚特兰蒂斯(Atlantis II)转化橄榄岩的平均成分几乎相同。最好用SWIR下方的一块更肥沃的母幔来解释,这表明通过简单地反转MORB组成预测的地壳厚度可能有很大的误差。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号