...
首页> 外文期刊>Journal of nuclear science and technology >Impact of Power Uprate on the Water Chemistry in the Primary Coolant Circuit of a Boiling Water Reactor Operating under a Fixed Core Flow Rate
【24h】

Impact of Power Uprate on the Water Chemistry in the Primary Coolant Circuit of a Boiling Water Reactor Operating under a Fixed Core Flow Rate

机译:功率增加对固定堆芯流速下运行的沸水反应堆主冷却回路中水化学的影响

获取原文
获取原文并翻译 | 示例
           

摘要

The approach of power uprate has been adopted by the utilities of light water reactors over the past few decades in order to increase the power generation efficiency of a nuclear reactor. Upon a power uprate, the power density of a nuclear reactor would change immediately, followed by water chemistry variations due to the enhanced radiolysis of water in the core and near-core regions. For commercial boiling water reactors (BWRs), it is currently a common practice to adopt hydrogen water chemistry (HWC) for corrosion mitigation. The optimal hydrogen injection rate may require a proper adjustment after a power uprate is practiced in a BWR. A DEMACE computer code was used in the current study to investigate the impact of various power uprate levels on major radiolytic species concentrations and the electrochemical corrosion potential (ECP) behavior of components in the primary coolant circuit of a domestic BWR operating under either normal water chemistry or HWC. The results of our analysis indicated that the chemical species concentrations and ECP did not vary monotonically with increases in reactor power level at a fixed feedwater hydrogen concentration. In particular, the upper plenum and upper downcomer regions exhibited uniquely higher ECPs at a 102% power level than at the other evaluated power levels. The impact of power uprate on the water chemistry in the primary coolant circuit of a BWR is expected to vary from location to location and eventually from plant to plant due to different degrees of radiolysis and physical dimensions.
机译:在过去的几十年中,轻水反应堆的公用事业已经采用了提高功率的方法,以提高核反应堆的发电效率。在功率增加时,核反应堆的功率密度将立即改变,随后由于核心和近核心区域中水的辐射分解增强而引起水化学变化。对于商用沸水反应堆(BWR),目前普遍采用氢化学法(HWC)来减轻腐蚀。在BWR中提高功率后,最佳氢注入速率可能需要适当调整。在当前的研究中,使用了DEMACE计算机代码来研究各种功率提升水平对主要放热物质浓度和在正常水化学条件下运行的家用BWR的主要冷却剂回路中组件的电化学腐蚀势(ECP)行为的影响。或HWC。我们的分析结果表明,在固定给水氢气浓度下,化学物质浓度和ECP不会随反应堆功率水平的增加而单调变化。特别是,在102%的功率水平上,上气室和上降液管区域表现出比其他评估的功率水平更高的ECP。由于辐射分解程度和物理尺寸的不同,功率提升对BWR主冷却剂回路中水化学的影响预计会因位置而异,最终因工厂而异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号