...
首页> 外文期刊>Journal of neural engineering >Robust simultaneous myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-time neuromusculoskeletal modeling
【24h】

Robust simultaneous myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-time neuromusculoskeletal modeling

机译:通过实时神经肌肉骨骼建模对腕部假肢进行多个自由度的鲁棒同时肌电控制

获取原文
获取原文并翻译 | 示例
           

摘要

Objective. Robotic prosthetic limbs promise to replace mechanical function of lost biological extremities and restore amputees' capacity of moving and interacting with the environment. Despite recent advances in biocompatible electrodes, surgical procedures, and mechatronics, the impact of current solutions is hampered by the lack of intuitive and robust man-machine interfaces. Approach. This work presents a biomimetic interface that synthetizes the musculoskeletal function of an individual's phantom limb as controlled by neural surrogates, i.e. electromyography-derived neural activations. With respect to current approaches based on machine learning, our method employs explicit representations of the musculoskeletal system to reduce the space of feasible solutions in the translation of electromyograms into prosthesis control commands. Electromyograms are mapped onto mechanical forces that belong to a subspace contained within the broader operational space of an individual's musculoskeletal system. Main results. Our results show that this constraint makes the approach applicable to real-world scenarios and robust to movement artefacts. This stems from the fact that any control command must always exist within the musculoskeletal model operational space and be therefore physiologically plausible. The approach was effective both on intact-limbed individuals and a transradial amputee displaying robust online control of multi-functional prostheses across a large repertoire of challenging tasks. Significance. The development and translation of man-machine interfaces that account for an individual's neuromusculoskeletal system creates unprecedented opportunities to understand how disrupted neuro-mechanical processes can be restored or replaced via biomimetic wearable assistive technologies.
机译:目的。机器人假肢有望替代失去的生物肢体的机械功能,并恢复截肢者与环境互动和互动的能力。尽管在生物相容性电极,外科手术和机电一体化方面取得了最新进展,但由于缺乏直观而强大的人机界面,目前的解决方案受到了影响。方法。这项工作提出了一个仿生界面,该界面可合成受神经替代物(即肌电图衍生的神经激活)控制的人体幻肢的肌肉骨骼功能。关于基于机器学习的当前方法,我们的方法采用了肌肉骨骼系统的显式表示,以减少将肌电图转换为假体控制命令时可行解决方案的空间。肌电图被映射到机械力上,该机械力属于一个人的肌肉骨骼系统更广阔的操作空间内所包含的子空间。主要结果。我们的结果表明,这种约束使得该方法适用于现实世界的场景,并且对运动伪像具有鲁棒性。这源于以下事实:任何控制命令必须始终存在于肌肉骨骼模型的操作空间内,因此在生理上是合理的。该方法对肢体完整的人和经radi骨截肢者均有效,该displaying截者在各种艰巨任务中显示出对多功能假体的强大在线控制。意义。人机界面的开发和翻译,它解决了个人的神经肌肉骨骼系统,为了解如何通过仿生可穿戴辅助技术如何恢复或替代被破坏的神经机械过程提供了前所未有的机会。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号