...
首页> 外文期刊>Journal of microanolithography, MEMS, and MOEMS >Study on dynamic actuation in double microcantilever-based electrostatic microactuators with an in-house experimental set-up
【24h】

Study on dynamic actuation in double microcantilever-based electrostatic microactuators with an in-house experimental set-up

机译:内部实验装置研究基于双微悬臂梁的静电微驱动器的动态驱动

获取原文
获取原文并翻译 | 示例
           

摘要

This paper investigates the effect of dynamic excitation and its utility for enhancement of stable displacement range for a double cantilever-based electrostatic microactuator. A coupled electromechanical problem has been formulated using Galerkin method and solved considering dynamic actuation. The effect of excitation frequency is analyzed thoroughly to estimate the maximum stable displacement range of the actuator. Extensive studies illustrate that for suitable ac voltage-frequency combination, the maximum stable tip deflection for the cantilevers can be obtained even in the range of 50% to 90% of initial gap under specific damping. Such inherent dynamic characteristic of the actuator has been exploited here to achieve larger travel range. Furthermore, the theoretical observation has been experimentally demonstrated with a double microcantile-ver-based structure fabricated using silicon-on-insulator based process. The experimentation has been carried out using a developed in-house set-up. The major advantage in the present study is that unlike reported literature, the extended range has been achieved here without any additional complex circuits or design modifications. The proposed concept can be extended further to improve the displacement range of other microstructures toward different applications.
机译:本文研究了动态激励的效果及其在提高双悬臂式静电微执行器的稳定位移范围方面的实用性。已使用Galerkin方法提出了耦合机电问题,并考虑了动态促动来解决了该问题。彻底分析了激励频率的影响,以估计执行器的最大稳定位移范围。大量研究表明,对于合适的交流电压-频率组合,即使在特定阻尼下,即使在初始间隙的50%至90%的范围内,也可以获得悬臂的最大稳定尖端偏转。执行器的这种固有的动态特性已在此处得到利用,以实现更大的行程范围。此外,理论观察已通过使用基于绝缘体上硅的工艺制造的双微悬臂梁结构进行了实验证明。实验是使用内部开发的装置进行的。本研究的主要优点是,与已报道的文献不同,此处无需任何额外的复杂电路或设计修改即可实现扩展范围。可以进一步扩展提出的概念,以改善其他微结构针对不同应用的位移范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号