...
首页> 外文期刊>Journal of materials science >Investigation on the electrochemical properties of hydrothermally synthesized pure and Nickel doped Zinc Sulfide microspheres for supercapacitor electrode applications
【24h】

Investigation on the electrochemical properties of hydrothermally synthesized pure and Nickel doped Zinc Sulfide microspheres for supercapacitor electrode applications

机译:超级涂物电极应用中水热合成纯净锌硫化锌微球电化学性能的研究

获取原文
获取原文并翻译 | 示例
           

摘要

Transition metal chalcogenides have garnered wide attention of the researchers in energy storage and conversion domains owing to their superior electronic conductivity, mechanical and thermal constancy. Zinc Sulfide (ZnS) has been identified as one of the most important II-VI semiconductor, with a band gap of 3.5-3.8 eV. Excellent ion accessibility and charge storage ability of nanosized ZnS makes this a prospective material in the field of energy storage. Besides ZnS nanoparticle possess advantages such as good electric conductivity, low diffusion resistance, fast electron transportation, non-toxic nature etc. It is a lightweight and cost effective material compared to other metal sulfides. Reports are available on supercapacitor electrodes based on different types of ZnS nanocomposites. However, investigation on the variation of this material's energy storage efficiency with metal doping and increased particle size are comparatively less. ZnS particles with microsphere morphology show enhanced reversibility due to less self-aggregation and volume expansion. In this work we report the synthesis and electrochemical studies of pure & nickel (Ni) doped ZnS microspheres. The synthesis of pure and Ni doped ZnS microspheres were carried out by hydrothermal method. The crystal structure, phase composition, and microstructure of the samples were analyzed by X-ray diffractometer (XRD) and Field Emission Scanning Electron Microscope (FESEM) respectively. The electrochemical behavior of pure ZnS and Ni doped ZnS microspheres were examined by means of Electrochemical Impedance Spectroscopy, Cyclic Voltammetry, and Galvanostatic charge-discharge. At 5A g~(-1) current density, Ni doped ZnS microspheres exhibited an enhanced specific capacitance of 104.2 F g~(-1) where pure ZnS microspheres showed 67.75F g~(-1).
机译:由于其优越的电子电导率,机械和热恒定,过渡金属硫属元生成就在储能和转换域中的研究人员获得了广泛的关注。硫化锌(ZnS)已被识别为最重要的II-VI半导体之一,带隙为3.5-3.8eV。纳米型ZnS的优异离子可访问性和电荷存储能力使得该储存领域的前瞻性材料。除ZnS纳米粒子外,还具有良好的导电性,低扩散电阻,快速电子传输,无毒性等的优点。它是与其他金属硫化物相比的轻质和成本效率的材料。基于不同类型的ZnS纳米复合材料,在超级电容器电极上提供报告。然而,对这种材料的储能效率与金属掺杂和增加的粒度增加的调查相对较低。具有微球体形态的ZnS颗粒由于自聚集和体积扩展而产生增强的可逆性。在这项工作中,我们报道了纯镍(Ni)掺杂ZnS微球的合成和电化学研究。通过水热法进行纯和Ni掺杂ZnS微球的合成。通过X射线衍射仪(XRD)和场发射扫描电子显微镜(FESEM)分析样品的晶体结构,相组合物和微观结构。通过电化学阻抗光谱,循环伏安法和电热电荷放电检查纯ZnS和Ni掺杂ZnS微球的电化学行为。在5A G〜(-1)电流密度下,Ni掺杂的ZnS微球具有增强的特定电容为104.2f g〜(-1),其中纯ZnS微球显示出67.75f g〜(-1)。

著录项

  • 来源
    《Journal of materials science》 |2020年第21期|19204-19212|共9页
  • 作者单位

    Futuristic Materials Research Centre for Planetary Exploration Department of Physics and Nanotechnology College of Engineering and Technology Faculty of Engineering and Technology SRM Institute of Science and Technology SRM Nagar Kattankulathur Kanchipuram Chennai Tamil Nadu 603203 India;

    Futuristic Materials Research Centre for Planetary Exploration Department of Physics and Nanotechnology College of Engineering and Technology Faculty of Engineering and Technology SRM Institute of Science and Technology SRM Nagar Kattankulathur Kanchipuram Chennai Tamil Nadu 603203 India;

    Electrochemical Energy Laboratory Department of Chemistry and Research Institute College of Engineering and Technology Faculty of Engineering and Technology SRM Institute of Science and Technology SRM Nagar Kattankulathur Kanchipuram Chennai Tamil Nadu 603203 India;

    Futuristic Materials Research Centre for Planetary Exploration Department of Physics and Nanotechnology College of Engineering and Technology Faculty of Engineering and Technology SRM Institute of Science and Technology SRM Nagar Kattankulathur Kanchipuram Chennai Tamil Nadu 603203 India;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);美国《生物学医学文摘》(MEDLINE);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号