首页> 外文期刊>Journal of Hydraulic Engineering >Characteristics of Velocity and Excess Density Profiles of Saline Underflows and Turbidity Currents Flowing over a Mobile Bed
【24h】

Characteristics of Velocity and Excess Density Profiles of Saline Underflows and Turbidity Currents Flowing over a Mobile Bed

机译:流化床上盐分底流和浑浊流的速度和密度分布特征

获取原文
获取原文并翻译 | 示例
           

摘要

Turbidity currents in the ocean and lakes are driven by suspended sediment. The vertical profiles of velocity and excess density are shaped by the interaction between the current and the bed as well as between the current and the ambient water above. We present results of a set of 74 experiments that focus on the characteristics of velocity and fractional excess density profiles of saline density and turbidity currents flowing over a mobile bed. The gravity flows include saline density flows, hybrid saline/turbidity currents and a pure turbidity current. The use of dissolved salt is a surrogate for suspended mud that is so fine that it does not settle out readily. Thus, all the currents can be considered to be model turbidity currents. The data cover both Froude-subcritical and Froude-supercritical regimes. Depending on flow conditions, the bed remains flat or bed forms develop over time, which in turn affect vertical profiles. For plane bed experiments, subcritical flow profiles have velocity peaks located higher up in the flow, and display a sharper interface at the top of the current, than their supercritical counterparts. The latter have excess density profiles that decline exponentially upward from the bed, whereas subcritical flows show profiles with a region near the bed where excess density varies little. Wherever bed forms are present, they have a significant effect on the profiles. Especially for Froude-supercritical flow, bed forms push the location of peak velocity upward, and render the near-bed fractional excess density more uniform. In the case of subcritical flow, bed forms do not significantly affect fractional excess density profiles; velocity profiles are pushed farther upward from the bed than in the case of a plane bed, but to a lesser extent than for supercritical bed forms. Overall, the relative position of the velocity peak above the bed shows a dependence upon flow regime, being lowered for increasing Froude number F_d. Gradient Richardson numbers Ri_g in the near-bed region increase with increasing F_d, but are lower than the critical value of 0.25, indicating that near-bed turbulent structures are not notably suppressed. At the top interface, values of Ri_g are above the critical value for subcritical and mildly supercritical F_d, effectively damping turbulence. However as F_d increases, Ri_g goes below the critical value. Shape factors calculated from the profiles for use in the depth-averaged equation of motion are evaluated for different flow and bed conditions. Normalized experimental profiles for supercritical currents scale up well with observations of field-scale turbidity currents in the Monterey Canyon, and the range of average bed slopes and Froude numbers also compare favorably with estimated field-scale flow conditions for the Amazon canyon and fan. This suggests that the experimental results can be used to interpret the kinds of flows that are responsible for the shaping of major submarine canyon-fan systems.
机译:海洋和湖泊中的浊流是由悬浮沉积物驱动的。流速和过量密度的垂直分布是由水流与河床之间以及水流与上方环境水之间的相互作用所决定的。我们介绍了一组74个实验的结果,这些实验的重点是流化床上流过的盐水密度和浊度电流的速度和分数超密度分布特征。重力流包括盐水密度流,混合盐水/浑浊流和纯浑浊流。溶解盐的使用是悬浮泥浆的替代品,悬浮泥浆是如此之细以至于不易沉降。因此,所有电流可以被认为是模型浊度电流。数据涵盖Froude次临界和Froude超临界状态。根据流动条件,床层保持平整或床层形式随时间发展,进而影响垂直剖面。对于平板实验,亚临界流动剖面的流速峰值位于流动的上方,并且比超临界流动剖面的流速峰值更尖锐。后者具有从床层向上呈指数下降的过量密度分布,而亚临界流显示的分布在床层附近,其中过量密度变化不大。无论床型存在于何处,它们都会对轮廓产生重大影响。特别是对于弗洛德(Froude)超临界流,床层形式将峰值速度的位置向上推,并使近床部分的多余密度更加均匀。在亚临界流量的情况下,床层形式不会显着影响分数过剩密度曲线;与平面床的情况相比,速度分布曲线从床中向上推得更远,但程度比超临界床形式要小。总的来说,床上方速度峰值的相对位置显示出对流态的依赖性,为提高弗劳德数F_d而降低了流速。近床区域的理查森梯度数字Ri_g随着F_d的增加而增加,但低于0.25的临界值,表明近床湍流结构没有受到明显抑制。在顶部界面,Ri_g的值高于亚临界和轻度超临界F_d的临界值,有效地抑制了湍流。但是,随着F_d的增加,Ri_g会低于临界值。针对不同的流量和床层条件,评估了用于深度平均运动方程的,从轮廓计算得出的形状因子。通过观察蒙特利峡谷的现场规模浊流,超临界电流的归一化实验曲线可以很好地扩大规模,并且平均河床坡度和弗洛德数的范围也与亚马逊峡谷和扇形的预估现场规模流动条件相吻合。这表明,实验结果可用于解释造成主要海底峡谷扇形系统成形的流动类型。

著录项

  • 来源
    《Journal of Hydraulic Engineering》 |2010年第7期|P.412-433|共22页
  • 作者单位

    Dept. of Civil and Environmental Engineering, Ven Te Chow Hydro-systems Laboratory, Univ. of Illinois at Urbana-Champaign, 205 North Mathews Ave., Urbana, IL 61801, Shell International Exploration and Production B.V., Rijswijk, The Netherlands;

    rnDept. of Civil and Environmental Engineering, Ven Te Chow Hydro-systems Laboratory, Univ. of Illinois at Urbana-Champaign, 205 North Mathews Ave., Urbana, IL 61801, Fonds de la Recherche Scientifique-FNRS, Rue d'Egmont 5, B-1000 Bruxelles, Belgium, Institute of Mechanics, Materials and Civil Engineering, Universite catholique de Louvain, Place du Levant 1, B-1348 Louvain-la-Neuve, Belgium;

    rnExxonMobil Exploration Co., Houston, TX Hess Corporation, Houston, TX;

    rnExxonMobil Exploration Co., Houston, TX;

    rnDept. of Civil and Environmental Engineering, Ven Te Chow Hydro-systems Laboratory, Univ. of Illinois at Urbana-Champaign, 205 North Mathews Ave., Urbana, IL 61801;

    rnDept. of Civil and Environmental Engineering, Ven Te Chow Hydro-systems Laboratory, Univ. of Illinois at Urbana-Champaign, 205 North Mathews Ave., Urbana, IL 61801 Dept. of Geology, Univ. of Illinois at Urbana-Champaign, Urbana, IL 61801;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    turbidity currents; density currents; supercritical flows; subcritical flows; bedforms; vertical profiles;

    机译:浊流;密度电流超临界流亚临界流床型垂直轮廓;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号