首页> 外文期刊>Journal of Heat Transfer >Numerical Simulation of Hydrogen-Air Boundary Layer Flows Augmented by Catalytic Surface Reactions1
【24h】

Numerical Simulation of Hydrogen-Air Boundary Layer Flows Augmented by Catalytic Surface Reactions1

机译:催化表面反应增强氢-空气边界层流动的数值模拟1

获取原文
获取原文并翻译 | 示例
           

摘要

Catalytic combustion of hydrogen-air boundary layers involves the adsorption of hydrogen and oxygen into a platinum coated surface, chemical reactions of the adsorbed species, and the de-sorption of the resulting products. Re-adsorption of some produced gases is also possible. The catalytic reactions can be beneficial in porous burners and catalytic reactors that use low equivalence ratios. In this case, the porous burner flame can be stabilized at low temperatures to prevent any substantial gas emissions, such as nitrogen oxides. The present paper is concerned with the numerical computation of heat transfer and chemical reactions in hydrogen-air mixture boundary layers that flow over platinum coated hot plates and inside rectangular channels. Chemical reactions are included in the gas-phase as well as on the solid platinum surface. In the gas-phase, eight species are involved in 26 elementary reactions. On the platinum hot surface, additional surface species are included that are involved in 16 additional surface chemical reactions. The platinum surface temperature distribution is prespecified, while the properties of the reacting flow are computed. The flow configurations investigated in the present paper are those of aflat plate boundary layer and a rectangular channel reacting flow. Finite-volume equations are obtained by formal integration over control volumes surrounding each grid node. Hybrid differencing is used to ensure that the finite-difference coefficients are always positive or equal to zero to reflect the real effect of neighboring nodes on a typical central node. The finite-volume equations are solved iteratively for the reacting gas flow properties. On the platinum surface, surface species balance equations, under steady-state conditions, are solved numerically. A nonuniform computational grid is used, concentrating most of the nodes in the boundary sub-layer adjoining the catalytic surface. For the flat plate boundary layer flow, the computed OH concentration is compared with experimental and numerical data of similar geometry. The obtained agreement is fairly good, with differences observed for the location of the peak value of OH. Surface temperature of 1170 K caused fast reactions on the catalytic surface in a very small part at the leading edge of the catalytic flat plate. The flat plate computational results for heat and mass transfer and chemical surface reactions at the gas-surface interface are correlated by nondimensional relations. The channel flow computational results are also compared with recent detailed experimental data for similar geometry. In this case, the catalytic surface temperature profile along the x-axis was measured accurately and is used in the present work as the boundary condition for the gas-phase energy equation. The present numerical results for the gas temperature, water vapor mole fraction, and hydrogen mole fraction are compared with the corresponding experimental data. In general, the agreement is very good especially in the first 105 mm. However, some differences are observed in the vicinity of the exit section of the rectangular channel.
机译:氢-空气边界层的催化燃烧涉及氢和氧在铂涂层表面的吸附,被吸附物质的化学反应以及所得产物的解吸。也可以重新吸附一些产生的气体。在使用低当量比的多孔燃烧器和催化反应器中,催化反应可能是有益的。在这种情况下,多孔燃烧器的火焰可以在低温下稳定,以防止任何实质性的气体排放,例如氮氧化物。本文涉及流过镀铂热板和矩形通道内部的氢-空气混合物边界层中传热和化学反应的数值计算。气相以及固态铂表面都包含化学反应。在气相中,八种物质参与了26个基本反应。在铂热表面上,还包括与16种其他表面化学反应有关的其他表面物质。预先规定铂的表面温度分布,同时计算反应流的性质。本文研究的流动形态是平板边界层和矩形通道反应流动。通过对每个网格节点周围的控制体积进行形式积分,可以得到有限体积方程。混合差分用于确保有限差分系数始终为正或等于零,以反映相邻节点在典型中央节点上的实际效果。对于反应气体的流动特性,迭代求解了有限体积方程。在铂表面上,稳态条件下的表面物种平衡方程可以通过数值求解。使用非均匀的计算网格,将邻接催化表面的边界子层中的大多数节点集中。对于平板边界层流,将计算出的OH浓度与类似几何形状的实验和数值数据进行比较。获得的一致性相当好,在OH峰值的位置上观察到差异。 1170 K的表面温度在催化平板前缘的很小一部分上引起了催化表面上的快速反应。气体-表面界面处的传热和传质以及化学表面反应的平板计算结果与无量纲关系相关。还将通道流量的计算结果与类似几何形状的最新详细实验数据进行了比较。在这种情况下,沿x轴的催化表面温度分布得到了精确测量,并在当前工作中用作气相能方程的边界条件。将当前的气体温度,水蒸气摩尔分数和氢摩尔分数的数值结果与相应的实验数据进行比较。通常,协议非常好,尤其是在前105毫米。然而,在矩形通道的出口部分附近观察到一些差异。

著录项

  • 来源
    《Journal of Heat Transfer》 |2011年第11期|p.114501.1-114501.12|共12页
  • 作者单位

    Department of Mechanical Engineering,Cairo University, Cairo, Egypt;

    The Hong Kong Polytechnic University,Hung Horn, Kowloon, Hong Kong;

    School of Engineering and Applied Science,The George Washington University,Washington, DC 20052;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    catalytic surface reaction; hydrogen/air; numerical methods;

    机译:催化表面反应氢气/空气数值方法;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号