首页> 外文期刊>Journal of Heat Transfer >Visualization of Two-Phase Flow in Serpentine Heat Exchanger Passages With Microscale Pin Fins
【24h】

Visualization of Two-Phase Flow in Serpentine Heat Exchanger Passages With Microscale Pin Fins

机译:蛇形换热器通道中两相流的微型针状鳍片可视化

获取原文
获取原文并翻译 | 示例
           

摘要

MicroChannel heat exchangers offer the potential for high heat transfer coefficients; however, implementation challenges must be addressed to realize this potential. Maldistribution of phases among the microchannels and the changing phase velocities associated with phase change present design challenges. Flow maldistribution and oscillatory instabilities can affect transfer rates and pressure drops. In condensers, evaporators, absorbers, and desorbers, changing phase velocities can change prevailing flow regimes from favorable to unfavorable. Geometries with serpentine passages containing pin fins can be configured to maintain favorable flow regimes throughout the component for phase-change heat and mass transfer applications. Due to the possibility of continuous redistribution of the flow across the pin fins along the flow direction, maldistribution can also be reduced. These features enable high heat transfer coefficients, thereby achieving considerable compactness. The characteristics of two-phase flow through a serpentine passage with micro-pin fin arrays with diameter 350 μm and height 406 μm are investigated. An air-water mixture is used to represent two-phase flow through the serpentine test section, and flow features are investigated using high-speed photography. Improved flow distribution is observed in the serpentine geometry. Distinct flow regimes, different from those observed in microchannels, are also established. Void fraction and interfacial area along the length of the serpentine passages are compared with the corresponding values for microchannels. A model developed for the two-phase frictional pressure drops across this serpentine micro-pin fin geometry predicts experimental values with a mean absolute error (MAE) of 7.16%.
机译:MicroChannel热交换器提供了高传热系数的潜力;但是,必须解决实施方面的挑战才能实现这一潜力。微通道之间的相分布不均以及与相变相关的相速度变化提出了设计挑战。流量分布不均和振荡不稳定会影响传输速率和压降。在冷凝器,蒸发器,吸收器和解吸器中,变化的相速度可能会将主流的流动方式从有利改变为不利。可以构造具有包含针状鳍片的蛇形通道的几何形状,以在整个组件中保持有利的流态,以进行相变传热和传质应用。由于沿着流动方向在销钉翅片上的流动连续重新分布的可能性,还可以减少分布不均。这些特征使得能够实现高的热传递系数,从而实现相当大的紧凑性。研究了通过蛇形通道的两相流的特性,该蛇形通道具有直径350μm和高度406μm的微针翅片阵列。空气-水混合物用于表示通过蛇形试验段的两相流动,并使用高速摄影技术研究流动特征。在蛇形几何结构中观察到改善的流动分布。还建立了与微通道中观察到的不同的流态。将沿蛇形通道长度的空隙率和界面面积与微通道的相应值进行比较。针对横跨蛇形微针鳍几何形状的两相摩擦压降开发的模型预测的实验值的平均绝对误差(MAE)为7.16%。

著录项

  • 来源
    《Journal of Heat Transfer》 |2018年第1期|011802.1-011802.9|共9页
  • 作者单位

    G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332;

    G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332;

    Fellow ASME G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号