首页> 外文期刊>Journal of Fusion Energy >Characterization of Short Intense Pulsed Electrothermal Plasma Capillaries for Use as Fusion and Launchers Heat Flux Sources
【24h】

Characterization of Short Intense Pulsed Electrothermal Plasma Capillaries for Use as Fusion and Launchers Heat Flux Sources

机译:短强度脉冲电热等离子体毛细管用作聚变和发射器热通量源的特性

获取原文
获取原文并翻译 | 示例
       

摘要

Electrothermal plasma sources operating in the confined capillary arc regime are characterized by the magnitude and shape of the discharge current. The desired plasma parameters at the source exit, especially the pressure and heat flux, are highly dependent on the arc due to the effect of the arc radiant energy that ablates the inner wall of the source. These sources have applications in fusion as drivers for pellet injectors and as high heat flux sources for fusion materials studies. The high-pressure high heat flux flow is also of application in mass accelerators and launch technology systems. The 1-D, time-dependent ETFLOW capillary code models the plasma generation and flow inside the capillary discharges and determines the plasma parameters. The input file to the code is the discharge current density providing the Joule heating in the energy equation. A circuit module has been developed and incorporated in the code to generate desired current shapes and magnitudes. The current pulse length was varied between 5 and 100 us at constant amplitude of 50 kA, and then the pulse amplitude was varied between 10 and 200 kA at a constant pulse length of 20 us. Increasing the pulse length while maintaining its amplitude increases the plasma density and the total ablated mass, which have accumulation behavior by increasing the pulse length, and subsequently increases the exit pressure from 60 to 410 MPa in the cases studied herein. The pressure increase allows the thermalization of the plasma particles through more collisions, which reduces the plasma temperature by about 0.2 eV. The bulk velocity follows the trend of the plasma temperature, but at shorter pulse lengths the total ablated mass is lower and enables the plasma to carry the particles with increasing velocity. Increasing the pulse amplitude up to 200 kA increases the density to about 18 kg/m3 and the bulk velocity, which varies between 6.1 and 10.7 km/s. A sharp increase in most plasma parameters occurs as a result of the increase in the pulse amplitude.
机译:在受限的毛细管电弧状态下运行的电热等离子体源的特征在于放电电流的大小和形状。由于烧蚀源内壁的电弧辐射能的作用,源出口处的所需等离子体参数,特别是压力和热通量,高度依赖于电弧。这些来源在熔合中具有应用,既可以用作丸粒喷射器的驱动器,又可以用作熔合材料研究的高热通量来源。高压高热通量流也适用于质量加速器和发射技术系统。一维,随时间变化的ETFLOW毛细管代码可模拟毛细管放电中的等离子体生成和流动,并确定等离子体参数。该代码的输入文件是在能量方程式中提供焦耳加热的放电电流密度。已经开发了电路模块并将其合并到代码中以生成所需的电流形状和大小。在50 kA的恒定振幅下,当前脉冲长度在5至100 us之间变化,然后在20 us的恒定脉冲长度下,脉冲振幅在10至200 kA之间变化。在保持其振幅的同时增加脉冲长度会增加等离子体密度和总烧蚀质量,这些等离子体密度和总烧蚀质量会通过增加脉冲长度而具有累积行为,然后在本文研究的情况下将出口压力从60 MPa增加到410 MPa。压力增加允许通过更多的碰撞使等离子体粒子热化,从而使等离子体温度降低约0.2 eV。体速度遵循等离子体温度的趋势,但是在较短的脉冲长度下,总烧蚀质量较低,并使等离子体能够以增加的速度携带颗粒。将脉冲幅度增加到200 kA,可将密度增加到约18 kg / m3,将体积速度提高到6.1至10.7 km / s之间。由于脉冲幅度的增加,大多数等离子体参数急剧增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号