首页> 外文期刊>Journal of Environmental Radioactivity >Modelling of the dissolution and reprecipitation of uranium under oxidising conditions in the zone of shallow groundwater circulation
【24h】

Modelling of the dissolution and reprecipitation of uranium under oxidising conditions in the zone of shallow groundwater circulation

机译:地下水浅埋区氧化条件下铀的溶解与再沉淀模拟

获取原文
获取原文并翻译 | 示例
           

摘要

Generic hydrochemical modelling of a grantoid-groundwater system, using the Russian software "HydroGeo", has been carried out with an emphasis on simulating the accumulation of uranium in the aqueous phase. The baseline model run simulates shallow granitoid aquifers (U content 5 ppm) under conditions broadly representative of southern Norway and southwestern Siberia: i.e. temperature 10 degrees C, equilibrated with a soil gas partial CO2 pressure (P-CO2, open system) of 10(-2.5) atm. and a mildly oxidising redox environment (Eh = +50 mV). Modelling indicates that aqueous uranium accumulates in parallel with total dissolved solids (or groundwater mineralisation M - regarded as an indicator of degree of hydrochemical evolution), accumulating most rapidly when M = 550-1000 mg L-1. Accumulation slows at the onset of saturation and precipitation of secondary uranium minerals at M = c. 1000 mg L-1 (which, under baseline modelling conditions, also corresponds approximately to calcite saturation and transition to Na-HCO3 hydrofacies). The secondary minerals are typically "black" uranium oxides of mixed oxidation state (e.g. U3O7 and U4O9). For rock U content of 5-50 ppm, it is possible to generate a wide variety of aqueous uranium concentrations, up to a maximum of just over 1 mg L-1, but with typical concentrations of up to 10 mu g L-1 for modest degrees of hydrochemical maturity (as indicated by M). These observations correspond extremely well with real groundwater analyses from the Altai-Sayan region of Russia and Norwegian crystalline bedrock aquifers. The timing (with respect to M) and degree of aqueous uranium accumulation are also sensitive to Eh (greater mobilisation at higher Eh), uranium content of rocks (aqueous concentration increases as rock content increases) and P-CO2 (low P-CO2 favours higher pH, rapid accumulation of aqueous U and earlier saturation with respect to uranium minerals). (C) 2017 Elsevier Ltd. All rights reserved.
机译:已使用俄罗斯软件“ HydroGeo”对类固醇-地下水系统进行了常规水化学建模,重点是模拟水相中铀的积累。基线模型运行在宽泛代表挪威南部和西伯利亚西南部的条件下模拟浅层花岗岩蓄水层(U含量为5 ppm):即温度10摄氏度,土壤气体CO2分压(P-CO2,开放系统)平衡为10( -2.5)atm。和温和的氧化还原环境(Eh = +50 mV)。建模表明,铀水溶液与总溶解固体平行累积(或地下水矿化M-被视为水化学演化程度的指标),当M = 550-1000 mg L-1时累积最迅速。在M = c时,次生铀矿物的饱和和沉淀开始时,积累会减慢。 1000 mg L-1(在基线建模条件下,它也大约对应于方解石饱和和过渡到Na-HCO3水相)。次要矿物通常是混合氧化态的“黑色”铀氧化物(例如U3O7和U4O9)。对于5-50 ppm的岩石U含量,可以生成各种各样的含水铀浓度,最高可超过刚好超过1 mg L-1,但对于典型的铀浓度,最高可达10μg L-1。适度的水化学成熟度(用M表示)。这些观察结果与俄罗斯阿尔泰-萨彦地区和挪威结晶基岩含水层的真实地下水分析非常吻合。铀的时机(相对于M)和程度也对Eh(在较高的Eh下更大的动员),岩石的铀含量(水含量随岩石含量的增加而增加)和P-CO2(低P-CO2有利)敏感。较高的pH值,U水溶液的快速积累和铀矿物质的较早饱和)。 (C)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号