首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >A Thermoelastohydrodynamic Analysis for the Static Performance of High-Speed-Heavy Load Tilting-Pad Journal Bearing Operating in the Turbulent Flow Regime and Comparisons to Test Data
【24h】

A Thermoelastohydrodynamic Analysis for the Static Performance of High-Speed-Heavy Load Tilting-Pad Journal Bearing Operating in the Turbulent Flow Regime and Comparisons to Test Data

机译:湍流条件下高速重载斜垫滑动轴承静态性能的热弹性流体力学分析及比较试验数据

获取原文
获取原文并翻译 | 示例
           

摘要

Tilting-pad journal bearings (TPJBs) ensure rotordynamic stability that could otherwise produce dangerously large amplitude rotor oil-whirl/whip motions in high-speed rotating machinery. Currently, highly efficient turbo compressors demand an ever increasing rotor surface speed and specific load on its support bearings. The accurate prediction of bearing performance is vital to guarantee reliable products, specifically with regard to reducing maximum bearing pad temperature and drag power losses, and operating with the least flow rate while still maximizing load capacity. The hydrodynamic pressure and heat generation in an oil film acting on a bearing pad produce significant mechanical and thermal deformations that change the oil film geometry (clearance and preload) to largely affect the bearing performance, static, and dynamic. In addition, a high surface speed bearing often operates in the turbulent flow regime that produces a notable increase in power loss and a drop in maximum pad temperature. This paper details a thermoelastohydrodynamic (TEHD) analysis model applied to TPJBs, presents predictions for their steady-load performance, and discusses comparisons with experimental results to validate the model. The test bearing has four pads with a load between pads configuration; its length L = 76.2 mm and shaft diameter D = 101.6 mm (L/D = 0.75). The rotor top speed is 22.6 krpm, i.e., 120 m/s surface speed, and the maximum specific load is 2.94 MPa for an applied load of 23 kN. The test procedure records shaft speed and applied load, oil supply pressure/temperature and flow rate, and also measures the pads' temperature and shaft temperature, as well as the discharge oil (sump) temperature. The TEHD model couples a generalized Reynolds equation for the hydrodynamic pressure generation with a three-dimensional energy transport equation for the film temperature. The pad mechanical deformation due to pressure utilizes the finite elemental method, whereas an analytical model estimates thermally induced pad crowning deformations. For operation beyond the laminar flow regime, the analysis incorporates the eddy viscosity concept for fully developed turbulent flow operation. Current predictions demonstrate the influence of pressure and temperature fields on the pads mechanical and thermally induced deformation fields and also show static performance characteristics such as bearing power loss, flow rate, and pad temperatures. The comparisons of test results and analysis results reveal that turbulent flow effects significantly reduce the pads' maximum temperature while increasing the bearing power loss. Turbulent flow mixing increases the diffusion of thermal energy and makes more uniform the temperature profile across the film.
机译:倾斜垫轴颈轴承(TPJB)确保转子动态稳定性,否则可能会在高速旋转机械中产生危险的大振幅转子油涡动/鞭打运动。当前,高效的涡轮压缩机要求转子表面速度和其支撑轴承上的比负载不断增加。准确预测轴承性能对于确保产品质量至关重要,特别是在降低最大轴承瓦温度和阻力功率损失,以最小流量运行同时仍使负载能力最大化方面。作用在轴承垫上的油膜中的流体动力压力和热量产生显着的机械和热变形,从而改变油膜的几何形状(游隙和预紧力),从而在很大程度上影响轴承的性能,静态和动态。另外,高表面速度轴承通常在湍流状态下运行,这会导致功率损耗显着增加以及最大轴瓦温度下降。本文详细介绍了应用于TPJB的热弹流体动力学(TEHD)分析模型,提出了其稳态载荷性能的预测,并讨论了与实验结果的比较以验证该模型。测试轴承有四个轴瓦,每个轴瓦之间有一个负载。其长度L = 76.2毫米,轴直径D = 101.6毫米(L / D = 0.75)。转子的最高速度为22.6 krpm,即表面速度为120 m / s,对于23 kN的施加载荷,最大比载荷为2.94 MPa。测试程序记录轴的转速和施加的载荷,供油压力/温度和流量,并测量轴瓦的温度和轴的温度以及排出的油(油底壳)温度。 TEHD模型将用于流体动压生成的广义雷诺方程与用于膜温度的三维能量传输方程相结合。垫板由于压力而产生的机械变形利用有限元法,而分析模型则估算了热引起的垫板隆起变形。对于超出层流状态的运行,该分析采用了涡流粘度概念,可充分开发湍流运行。当前的预测表明压力和温度场对轴瓦的机械和热变形场的影响,并且还显示了静态性能特征,例如轴承功率损耗,流速和轴瓦温度。测试结果与分析结果的比较表明,湍流效应显着降低了轴瓦的最高温度,同时增加了轴承的功率损耗。湍流混合增加了热能的扩散,并使整个薄膜的温度分布更加均匀。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号