...
首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >On the Leakage, Torque, and Dynamic Force Coefficients of Air in Oil (Wet) Annular Seal: A Computational Fluid Dynamics Analysis Anchored to Test Data
【24h】

On the Leakage, Torque, and Dynamic Force Coefficients of Air in Oil (Wet) Annular Seal: A Computational Fluid Dynamics Analysis Anchored to Test Data

机译:关于油(湿)环形密封件中空气的泄漏,扭矩和动态力系数:基于测试数据的计算流体动力学分析

获取原文
获取原文并翻译 | 示例
           

摘要

Subsea pumps and compressors must withstand multiphase flows whose gas volume fraction (GVF) or liquid volume fraction (LVF) varies over a wide range. Gas or liquid content as a dispersed phase in the primary stream affects the leakage, drag torque, and dynamic forced performance of secondary flow components, namely seals, thus affecting the process efficiency and mechanical reliability of pumping/compressing systems, in particular during transient events with sudden changes in gas (or liquid) content. This paper, complementing a parallel experimental program, presents a computational fluid dynamics (CFD) analysis to predict the leakage, drag power, and dynamic force coefficients of a smooth surface, uniform clearance annular seal supplied with air in oil mixture whose inlet GVF varies discretely from 0.0 to 0.9, i.e., from a pure liquid stream to a nearly allgas content mixture. The test seal has uniform radial clearance C-r = 0.203 mm, diameter D = 127 mm, and length L = 0.36 D. The tests were conducted with an inlet pressure/exit pressure ratio equal to 2.5 and a rotor surface speed of 23.3 m/s (3.5 krpm), similar to conditions in a pump neck wear ring seal. The CFD two-phase flow model, first to be anchored to test data, uses an Euler-Euler formulation and delivers information on the precise evolution of the GVF and the gas and liquid streams' velocity fields. Recreating the test data, the CFD seal mass leakage and drag power decrease steadily as the GVF increases. A multiple-frequency shaft whirl orbit method aids in the calculation of seal reaction force components, and from which dynamic force coefficients, frequency-dependent, follow. For operation with a pure liquid, the CFD results and test data produce a constant cross-coupled stiffness, damping, and added mass coefficients, while also verifying predictive formulas typical of a laminar flow. The injection of air in the oil stream, small or large in gas volume, immediately produces force coefficients that are frequency-dependent; in particular the direct dynamic stiffness which hardens with excitation frequency. The effect is most remarkable for small GVFs, as low as 0.2. The seal test direct damping and cross-coupled dynamic stiffness continuously drop with an increase in GVF. CFD predictions, along with results from a bulk-flow model (BFM), reproduce the test force coefficients with great fidelity. Incidentally, early engineering practice points out to air injection as a remedy to cure persistent (self-excited) vibration problems in vertical pumps, submersible and large size hydraulic. Presently, the model predictions, supported by the test data, demonstrate that even a small content of gas in the liquid stream significantly raises the seal direct stiffness, thus displacing the system critical speed away to safety. The sound speed of a gas in liquid mixture is a small fraction of those speeds for either the pure oil or the gas, hence amplifying the fluid compressibility that produces the stiffness hardening. The CFD model and a dedicated test rig, predictions and test data complementing each other, enable engineered seals for extreme applications.
机译:海底泵和压缩机必须能够承受气体体积分数(GVF)或液体体积分数(LVF)在很大范围内变化的多相流。气体或液体含量作为主流中的分散相会影响次级流组件(即密封件)的泄漏,阻力转矩和动态强制性能,从而影响泵送/压缩系统的过程效率和机械可靠性,尤其是在瞬态事件期间气体(或液体)含量突然变化。本文作为一个并行实验程序的补充,提供了一种计算流体动力学(CFD)分析,以预测光滑的表面,均匀间隙的环形密封件的泄漏,阻力和动态力系数,该密封件由空气在油混合物中供入,进气口GVF离散地变化从0.0到0.9,即从纯液体流到几乎所有气体含量的混合物。该测试密封件具有均匀的径向间隙Cr = 0.203 mm,直径D = 127 mm,长度L = 0.36D。测试在入口压力/出口压力比等于2.5且转子表面速度为23.3 m / s的条件下进行(3.5 krpm),类似于泵颈磨损环密封中的条件。 CFD两相流模型首先使用测试数据进行锚定,使用Euler-Euler公式,并提供有关GVF的精确演变以及气体和液体流的速度场的信息。重新创建测试数据,CFD密封件的质量泄漏和阻力随GVF的增加而稳步下降。多频轴回旋轨道方法有助于计算密封反作用力分量,并从中得出与频率有关的动力系数。对于纯液体运行,CFD结果和测试数据可产生恒定的交叉耦合刚度,阻尼和附加的质量系数,同时还可验证层流的典型预测公式。将空气注入气体体积较小或较大的油流中,会立即产生与频率有关的力系数;特别是直接的动态刚度,它随激励频率而变硬。对于低至0.2的小型GVF,效果最为显着。密封测试的直接阻尼和交叉耦合的动态刚度随着GVF的增加而连续下降。 CFD预测以及整体流模型(BFM)的结果可以高度逼真地再现试验力系数。顺便说一句,早期的工程实践指出注气是一种解决立式泵,潜水器和大型液压系统中持续(自激)振动问题的方法。目前,由测试数据支持的模型预测表明,即使液流中的气体含量很少,也会显着提高密封件的直接刚度,从而将系统的临界速度转移到安全上。气体在液体混合物中的声速仅为纯油或气体的声速的一小部分,因此放大了导致刚度硬化的流体可压缩性。 CFD模型和专用的测试平台,预测和测试数据相辅相成,可为极端应用提供工程密封。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号