...
首页> 外文期刊>Journal of Engineering for Gas Turbines and Power >Leakage and Dynamic Force Coefficients for Two Labyrinth Gas Seals: Teeth-on-Stator and Interlocking Teeth Configurations. A Computational Fluid Dynamics Approach to Their Performance
【24h】

Leakage and Dynamic Force Coefficients for Two Labyrinth Gas Seals: Teeth-on-Stator and Interlocking Teeth Configurations. A Computational Fluid Dynamics Approach to Their Performance

机译:两种迷宫气密封的泄漏系数和动态力系数:定子上的齿和互锁的齿结构。计算流体力学方法的性能

获取原文
获取原文并翻译 | 示例
           

摘要

Labyrinth gas seals (LSs) commonly used in turbomachines reduce secondary flow leakage. Conventional see-through labyrinth seal designs include either all teeth-on-stator (TOS) or all teeth-on-rotor (TOR). Experience shows that an interlocking labyrinth seal (ILS), with teeth on both stator and rotor, reduces gas leakage by up to 30% compared to the conventional see-through designs. However, field data for ILS rotordynamic characteristics are still vague and scarce in the literature. This work presents flow predictions for an ILS and a TOS LS, both seals share identical design features, namely radial clearance C-r = 0.2 mm, rotor diameter D = 150 mm, tooth pitch L-i = 3.75 mm, and tooth height B = 3 mm. Air enters the seal at supply pressure P-in = 3.8, 6.9 bar (absolute) and temperature of 25 degrees C. The ratio of gas exit pressure to supply pressure ranges from 0.5 to 0.8, and the rotor speed is fixed at 10 krpm (surface speed of 79 m/s). The analysis implements a computational fluid dynamics (CFD) method with a multi-frequency-orbit rotor whirl model. The CFD predicted mass flow rate for the ILS is similar to 21% lower than that of the TOS LS, thus making the ILS a more efficient choice. Integration of the dynamic pressure fields in the seal cavities, obtained for excitation frequency (omega) ranging from 12% to 168% of rotor speed (sub and super synchronous whirl), allows an accurate estimation of the seal dynamic force coefficients. For all the considered operating conditions, at low frequency range, the TOS LS shows a negative direct stiffness (K 0), frequency independent; whereas the ILS has K 0 that increases with both frequency and supply pressure. For both seals, the magnitude of K decreases when the exit pressure/inlet pressure ratio increases. On the other hand, the cross-coupled stiffness (k) from both seals is frequency dependent, its magnitude increases with gas supply pressure, and k for the ILS is more sensitive to a change in the exit/inlet pressure ratio. Notably, k turns negative for subsynchronous frequencies below rotor speed (Omega) for both the TOS LS and the ILS. The direct damping (C) for the TOS LS remains constant for omega 1/2 Omega and has a larger magnitude than the damping for the ILS over the frequency range up to 1.5 Omega. An increase in exit/inlet pressure ratio decreases the direct damping for both seals. The effective damping coefficient, C-eff = (C-k/omega), whenever positive aids to damp vibrations, whereas C-eff 0 is a potential source for an instability. For frequencies omega/Omega 1.3, C-eff for the TOS LS is higher in magnitude than that for the ILS. From a rotordynamics point of view, the ILS is not a sound selection albeit it reduces leakage. Comparison of the CFD predicted force coefficients against those from a bulk flow model demonstrates that the later simple model delivers poor results, often contradictory and largely indifferent to the type of seal, ILS or TOS LS. In addition, CFD model predictions are benchmarked against experimental dynamic force coefficients for two TOS LSs published by Ertas et al. (2012, "Rotordynamic Force Coefficients for Three Types of Annular Gas Seals With Inlet Preswirl and High Differential Pressure Ratio," ASME J. Eng. Gas Turbines Power, 134(4), pp. 04250301-04250312) and Vannini et al. (2014, "Labyrinth Seal and Pocket Damper Seal High Pressure Rotordynamic Test Data," ASME J. Eng. Gas Turbines Power, 136(2), pp. 022501-022509.)
机译:涡轮机中常用的迷宫气封(LSs)减少了二次流泄漏。常规的透明迷宫式密封设计包括所有定子上齿(TOS)或所有转子上齿(TOR)。经验表明,与传统的透视设计相比,在定子和转子上均带有齿的互锁迷宫式密封(ILS)可将气体泄漏减少多达30%。但是,有关ILS转子动力学特性的现场数据在文献中仍然模糊不清。这项工作提出了ILS和TOS LS的流量预测,这两个密封件具有相同的设计特征,即径向游隙C-r = 0.2 mm,转子直径D = 150 mm,齿距L-i = 3.75 mm和齿高B = 3 mm。空气在供应压力P-in = 3.8、6.9 bar(绝对压力)和25摄氏度的温度下进入密封件。气体出口压力与供应压力的比值为0.5至0.8,转子速度固定为10 krpm(表面速度为79 m / s)。该分析利用多频轨道转子涡流模型实现了计算流体动力学(CFD)方法。 CLS预测的ILS质量流率比TOS LS低21%,因此使ILS成为更有效的选择。密封腔中的动压力场的积分(励磁频率(ω)为转子速度的12%至168%)(次级和超同步旋涡)获得,可以精确估计密封动力系数。对于所有考虑的工作条件,在低频范围内,TOS LS都具有负的直接刚度(K <0),与频率无关;而ILS的K> 0随频率和供应压力而增加。对于两个密封件,当出口压力/入口压力比增加时,K的大小减小。另一方面,来自两个密封件的交叉耦合刚度(k)随频率变化,其大小随供气压力而增加,而用于ILS的k对出口/入口压力比的变化更敏感。值得注意的是,对于低于TOS LS和ILS的转子速度(Omega)的次同步频率,k变为负。对于Omega> 1/2 Omega,TOS LS的直接阻尼(C)保持恒定,并且在高达1.5 Omega的频率范围内具有比ILS更大的阻尼。出口/入口压力比的增加会降低两个密封件的直接阻尼。只要正值有助于阻尼振动,有效阻尼系数C-eff =(C-k / omega),而C-eff <0是造成不稳定的潜在原因。对于ω/Ω<1.3的频率,TOS LS的C-eff幅度大于ILS的C-eff。从转子动力学的角度来看,ILS并不是声音的选择,尽管它可以减少泄漏。将CFD预测的力系数与整体流量模型的力系数进行比较后,可以发现,较简单的模型提供的结果较差,通常是矛盾的,并且与密封件类型(ILS或TOS LS)无关。另外,CFD模型的预测是根据Ertas等人发表的两个TOS LS的实验动力系数进行基准测试的。 (2012年,“带有进气口预旋和高差压比的三种类型的环形气密封件的旋转动力系数”,ASME J.燃气轮机动力,134(4),第04250301-04250312页)和Vannini等人。 (2014年,“迷宫式密封和袋式阻尼器密封的高压转子动力测试数据,” ASME J. Eng。Gas Turbines Power,136(2),第022501-022509页。)

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号