首页> 外文期刊>Journal of Energy Storage >Mitigation of sulfation in lead acid battery towards life time extension using ultra capacitor in hybrid electric vehicle
【24h】

Mitigation of sulfation in lead acid battery towards life time extension using ultra capacitor in hybrid electric vehicle

机译:混合动力电动汽车超电容延伸铅酸电池硫酸盐的减轻

获取原文
获取原文并翻译 | 示例
           

摘要

Batteries act as one of the primary sources of energy for high power Hybrid Electric Vehicle (HEV). The life of the battery becomes a significant constraint while building an HEV. So researchers found Lithium-ion batteries are more suitable for HEV with a better lifecycle. But the manufacturing cost of Lithium-ion batteries is expensive. Thus, while designing an economic HEV, the cost of batteries also a constraint. In subsequent years, lead-acid batteries are found one of the best alternatives for lithium-ion. Sulfation is the main problem in lead-acid batteries. So de-sulfation is a solution to recover the sulphated lead-acid battery. But de-sulfation was not found as a better solution for preventing sulfation. Hence battery management system for proper charging or discharge is found as a passive solution for the sulfation. In literature, many methods are reviewed related to proper charging and a discharging controller which may trap in sulfation problem. Hence, this paper, an Atom Search Algorithm (ASA) based Hybrid Energy Storage System (HESS) is designed to enable proper charging and discharging controller for increasing the lifecycles of the lead-acid battery by avoiding sulfation. The lead-acid battery is connected with Ultra-Capacitor (UC) through a bidirectional DC-DC converter to enable proper charging and to discharge of controller in a. The lifetime extension of lead-acid battery is attained by maintaining the proper charging and discharging through the conservation of Depth of Charge (DOC) and State of Charge (SOC). The charging and discharging controller of the lead-acid battery are enabled by a rule-based control strategy in the converter. The optimal operation of the converter is to provide essential supply to meet the load drive cycle as well as battery charging progress. To avoid battery's dry conditions, UC is playing the leading role to supply by the converter. The controller action is performed through the consumption of the Fractional-Order Proportional Integral Derivative Controller (FOPID) in the bidirectional DC-DC converter. The optimal switching operations are selected with the utilisation of the ASA algorithm. The proposed method is implemented in MATLAB/ Simulink and contrasted with existing methods. Finally, the proposed method extends the lifecycles of the battery to 7500 cycles by proper charging and discharging controller.
机译:电池作为高功率混合动力电动车(HEV)的主要能源之一。在构建HEV时,电池的寿命成为一个重要的约束。因此,研究人员发现锂离子电池更适合HEV,具有更好的生命周期。但锂离子电池的制造成本昂贵。因此,在设计经济HEV时,电池的成本也是约束。在随后的几年中,铅酸电池被发现是锂离子的最佳替代品之一。硫化是铅酸电池中的主要问题。因此,脱硫酸是回收硫酸化铅酸电池的溶液。但没有发现脱硫化作为预防硫化的更好的解决方案。因此,用于适当充电或放电的电池管理系统被发现是硫化的被动解决方案。在文献中,综述了许多方法与适当的充电和放电控制器相关,其可以在硫化问题中捕获。因此,本文,基于原子搜索算法(ASA)的混合能量存储系统(HESS),设计成使得适当的充电和放电控制器来通过避免硫化来增加铅酸电池的生命周期。铅酸电池通过双向DC-DC转换器与超电容器(UC)连接,以便适当充电并在a中排出控制器。通过维持通过守恒的充电(DOC)和充电状态(SOC)来实现铅酸电池的寿命延伸。通过转换器中的基于规则的控制策略使能引入酸电池的充电和放电控制器。转换器的最佳操作是提供必要的电源,以满足负载驱动循环以及电池充电进度。为避免电池的干燥条件,UC正在通过转换器发挥主导作用。通过双向DC-DC转换器中的分数级比例积分衍生控制器(FOPID)的消耗来执行控制器动作。利用ASA算法选择最佳切换操作。该方法在Matlab / Simulink中实现,并与现有方法形成对比。最后,通过适当的充电和放电控制器将电池的生命周期延伸到7500循环。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号