...
首页> 外文期刊>Journal of Energy Storage >Electrospun composite nanofibre supercapacitors enhanced with electrochemically 3D printed current collectors
【24h】

Electrospun composite nanofibre supercapacitors enhanced with electrochemically 3D printed current collectors

机译:电纺复合纳米纤维超级电容器通过电化学3D打印集电器增强

获取原文
获取原文并翻译 | 示例
           

摘要

Carbonised electrospun nanofibres are attractive for supercapacitors due to their relatively high surface area, facile production routes and flexibility. With the addition of materials such as manganese oxide (MnO), the specific capacitance of the carbon nanofibres can be further improved through fast surface redox reactions, however this can reduce the electrical conductivity. In this work, electrochemical 3D printing is used as a novel means of improving electrical conductivity and the current collector-electrode interfacial resistance through the deposition of highly controlled layers of copper. Neat carbonised electrospun electrodes made with a 30 wt% manganese acetylacetonate (MnACAC) and polyacrylonitrile precursor solution have a hydrophobic nature preventing an even copper deposition. However, with an ethanol treatment, the nanofibre films can be made hydrophilic which enhances the copper deposition morphology to enable the formation of a percolating conductive network through the electrode. This has the impact of increasing electrode electronic conductivity by 360% from 10 S/m to 46 S/m and increasing specific capacitance 110% from 99 F/g to 208 F/g at 5 mV/s through increased utilisation of the pseudocapacitive active material. This novel approach thus provides a new route for performance enhancement of electrochemical devices using 3D printing, which opens new design possibilities.
机译:碳化电纺纳米纤维因其相对较高的表面积,便捷的生产路线和灵活性而吸引了超级电容器。通过添加诸如氧化锰(MnO)之类的材料,可以通过快速的表面氧化还原反应进一步提高碳纳米纤维的比电容,但是这会降低导电性。在这项工作中,电化学3D打印被用作通过沉积高度受控的铜层来提高电导率和改善集电器-电极界面电阻的新颖手段。用30重量%的乙酰丙酮锰(MnACAC)和聚丙烯腈前体溶液制成的整洁的电纺丝电极具有疏水性,可防止均匀的铜沉积。然而,通过乙醇处理,纳米纤维膜可以制成亲水性的,这增强了铜的沉积形态,从而能够通过电极形成渗透性导电网络。通过增加伪电容活性物质的利用率,可以将电极电子电导率从10 S / m提高360%至46 S / m,比电容在5 mV / s时从99 F / g提高至208 F / g,提高110%。材料。因此,这种新颖的方法为使用3D打印增强电化学装置的性能提供了一条新途径,从而开辟了新的设计可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号