首页> 外文期刊>Journal of Energy Resources Technology >Optimal Synthesis/Design of a Pem Fuel Cell Cogeneration System for Multi-Unit Residential Applications–Application of a Decomposition Strategy
【24h】

Optimal Synthesis/Design of a Pem Fuel Cell Cogeneration System for Multi-Unit Residential Applications–Application of a Decomposition Strategy

机译:用于多单元住宅应用的Pem燃料电池热电联产系统的最佳综合/设计-分解策略的应用

获取原文
获取原文并翻译 | 示例
           

摘要

The application of a decomposition methodology to the synthesis/design optimization of a stationary cogeneration proton exchange membrane (PEM) fuel cell system for residential applications is the focus of this paper. Detailed thermodynamic, economic, and geometric models were developed to describe the operation and cost of the fuel processing sub-system and the fuel cell stack sub-system. Details of these models are given in an accompanying paper by the authors. In the present paper, the case is made for the usefulness and need of decomposition in large-scale optimization. The types of decomposition strategies considered are conceptual, time, and physical decomposition. Specific solution approaches to the latter, namely Local-Global Optimization (LGO) are outlined in the paper. Conceptual/time decomposition and physical decomposition using the LGO approach are applied to the fuel cell system. These techniques prove to be useful tools for simplifying the overall synthesis/design optimization problem of the fuel cell system. The results of the decomposed synthesis/design optimization indicate that this system is more economical for a relatively large cluster of residences (i.e. 50). Results also show that a unit cost of power production of less than 10 cents/kWh on an exergy basis requires the manufacture of more than 1500 fuel cell sub-system units per year. Finally, based on the off-design optimization results, the fuel cell system is unable by itself to satisfy the winter heat demands. Thus, the case is made for integrating the fuel cell system with another system, namely, a heat pump, to form what is called a total energy system.
机译:分解方法在住宅用固定式热电联产质子交换膜(PEM)燃料电池系统的合成/设计优化中的应用是本文的重点。开发了详细的热力学,经济和几何模型来描述燃料处理子系统和燃料电池堆子系统的运行和成本。作者在随附的论文中提供了这些模型的详细信息。本文提出了大规模优化中分解的有用性和必要性。所考虑的分解策略类型包括概念分解,时间分解和物理分解。本文概述了后者的具体解决方案,即局部全局优化(LGO)。使用LGO方法的概念/时间分解和物理分解应用于燃料电池系统。这些技术被证明是用于简化燃料电池系统的总体综合/设计优化问题的有用工具。分解后的综合/设计优化结果表明,该系统对于较大的住宅群(即50个)而言更为经济。结果还表明,在火用基础上,单位发电成本低于10美分/ kWh,则每年需要制造1500多个燃料电池子系统。最后,基于非设计优化结果,燃料电池系统本身无法满足冬季的热量需求。因此,形成了将燃料电池系统与另一系统即热泵结合以形成所谓的总能量系统的情况。

著录项

  • 来源
    《Journal of Energy Resources Technology》 |2004年第1期|p. 30-33|共4页
  • 作者单位

    Center for Energy Systems Research, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061;

    Center for Energy Systems Research, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061;

    Center for Energy Systems Research, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 一般性问题;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号